Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Target reconstruction algorithm for four-beam sheared coherent imaging

Lu Chang-Ming Chen Ming-Lai Luo Xiu-Juan Zhang Yu Liu Hui Lan Fu-Yang Cao Bei

Citation:

Target reconstruction algorithm for four-beam sheared coherent imaging

Lu Chang-Ming, Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Liu Hui, Lan Fu-Yang, Cao Bei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sheared-beam imaging, which is a nonconventional coherent laser imaging technique, can be used to better solve the problem of taking pictures with high resolution for remote targets through turbulent medium than conventional optical methods. In the previous research on this technique, a target was illuminated by three coherent laser beams that were laterally arranged at the transmitter plane into an L pattern. In order to obtain a high quality image, a series of time-varying scattered signals is collected to reconstruct speckled images of the same object. To overcome atmospheric turbulence, multiple sets of three-beam laser should be emitted, which increases data acquisition time. In this paper, aiming at the quasi real-time problem of conventional sheared beam imaging technique, we use four-beam laser with rectangular distribution instead of the traditional L type sheared three-beam laser to illuminate the target. According to this, we propose a target reconstruction algorithm for four-beam sheared coherent imaging to reconstruct four target images simultaneously in one measurement, which can acquire high quality images by reducing the amount of measurement and the speckle noise. Meanwhile, it can greatly reduce the amount of beam switching in multi-group emission and improve the imaging efficiency. Firstly, the principle of the four-beam sheared coherent imaging technique is deduced. Secondly, in the algorithm, the speckle amplitude and phase difference frames can be extracted accurately by searching for the accurate positions of the beat frequency components. Based on the speckle phase difference frames, four sets of wavefront phases can be demodulated by the least squares method, and wavefront amplitude can be obtained by algebraic operation of speckle amplitude. The reconstructed wavefront is used for inverse Fourier transform to yield a two-dimensional image. A series of speckled images is averaged to form an incoherent image. Finally, the validity of the proposed technique is verified by simulations. From the simulation results, the image quality of the proposed method is better than that of the traditional method in the same amount of measurement. Furthermore, on the premise of the same image quality, the data acquisition amount of the proposed method is 2-3 times as large as that of the traditional method. In other words, compared with that of the traditional method, the data acquisition time of the proposed method is reduced at least by half and the algorithm processing time is less. It can be concluded that the proposed imaging technique can not only improve the efficiency of target reconstruction, but also present a better way of imaging the remote moving targets.
      Corresponding author: Chen Ming-Lai, shuxuemlchen@163.com
    [1]

    Voelz D G 1995 Proc. SPIE 2566 74

    [2]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [3]

    Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150

    [4]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [5]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [6]

    Sica L 1996 Appl. Opt. 35 264

    [7]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [8]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323

    [9]

    Gamiz V L 1994 Proc. SPIE 2302 2

    [10]

    Hutchin R A US Patent 20120292481 [2012-11-22]

    [11]

    Hutchin R A US Patent 20120162631 [2012-06-28]

    [12]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [13]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese) [陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 66 024203]

    [14]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [15]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [16]

    Zebker H A, Lu Y P 1998 J. Opt. Soc. Am. A 15 586

    [17]

    Takajo H, Takahashi T 1988 J. Opt. Soc. Am. A 5 1818

    [18]

    Hudgin R H 1977 J. Opt. Soc. Am. A 67 375

    [19]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [20]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 64 054204]

    [21]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese) [曹蓓, 罗秀娟, 陈明徕, 张羽 2015 64 124205]

  • [1]

    Voelz D G 1995 Proc. SPIE 2566 74

    [2]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [3]

    Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150

    [4]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [5]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [6]

    Sica L 1996 Appl. Opt. 35 264

    [7]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [8]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323

    [9]

    Gamiz V L 1994 Proc. SPIE 2302 2

    [10]

    Hutchin R A US Patent 20120292481 [2012-11-22]

    [11]

    Hutchin R A US Patent 20120162631 [2012-06-28]

    [12]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [13]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese) [陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 66 024203]

    [14]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [15]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [16]

    Zebker H A, Lu Y P 1998 J. Opt. Soc. Am. A 15 586

    [17]

    Takajo H, Takahashi T 1988 J. Opt. Soc. Am. A 5 1818

    [18]

    Hudgin R H 1977 J. Opt. Soc. Am. A 67 375

    [19]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [20]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 64 054204]

    [21]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese) [曹蓓, 罗秀娟, 陈明徕, 张羽 2015 64 124205]

  • [1] Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing. Fast sampling based image reconstruction algorithm for sheared-beam imaging. Acta Physica Sinica, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] Cao Qi-Zhi, Tang Jin-Feng, Pan Yang-Liu, Jiang Min, Jiang Si-Yue, Zhang Jing, Jia Chen-Ling, Fan Dong-Xin, Deng Ting, Wang Hua-Hua, Duan Lian. Dynamic calibration of linear shear spatial modulation snapshot imaging polarimeter. Acta Physica Sinica, 2022, 71(15): 154205. doi: 10.7498/aps.71.20220229
    [3] Chen Ming-Lai, Liu Hui, Zhang Yu, Luo Xiu-Juan, Ma Cai-Wen, Yue Ze-Lin, Zhao Jing. Spatial domain sparse reconstruction algorithm of sheared beam imaging. Acta Physica Sinica, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] Zhang Tao, Hou Hong, Bao Ming. Imaging through coda wave interferometryvia sparse reconstruction. Acta Physica Sinica, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] Gao Qiang, Li Xiao-Qiu, Zhou Zhi-Peng, Sun Lei. Far-field super-resolution scanning imaging based on fractal resonator. Acta Physica Sinica, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] Zhang Yu, Luo Xiu-Juan, Liu Hui, Chen Ming-Lai, Lan Fu-Yang, Jia Hui, Cao Bei. Beat frequency error rectifying in multi-beam laser coherent remote tmaging. Acta Physica Sinica, 2018, 67(4): 044201. doi: 10.7498/aps.67.20172125
    [7] Lan Fu-Yang, Luo Xiu-Juan, Fan Xue-Wu, Zhang Yu, Chen Ming-Lai, Liu Hui, Jia Hui. Effect of uplink atmospheric wavefront distortion on image quality of sheared-beam imaging. Acta Physica Sinica, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [8] Wang Pan-Pan, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Qiu Peng, Zhai Guang-Jie. Moving target compressive imaging based on improved row scanning measurement matrix. Acta Physica Sinica, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [9] Yao Wei-Qiang, Huang Wen-Hao, Yang Chu-Ping. Theoretical analysis of spectrum reconstruction imaging using single-pixel detection. Acta Physica Sinica, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [10] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] Li Jian-Xin, Bai Cai-Xun, Liu Qin, Shen Yan, Xu Wen-Hui, Xu Yi-Xuan. Beam shearing characteristic analysis of interferometric hyperspectral imaging system. Acta Physica Sinica, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [12] Lan Fu-Yang, Luo Xiu-Juan, Chen Ming-Lai, Zhang Yu, Liu Hui. Sheared-beam imaging of object with depth information. Acta Physica Sinica, 2017, 66(20): 204202. doi: 10.7498/aps.66.204202
    [13] Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Lan Fu-Yang, Liu Hui, Cao Bei, Xia Ai-Li. Sheared-beam imaging target reconstruction based on all-phase spectrum analysis. Acta Physica Sinica, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [14] Li Ming-Fei, Yang Ran, Huo Juan, Zhao Lian-Jie, Yang Wen-Liang, Wang Jun, Zhang An-Ning. Quantum imaging of cooperative target based on photon-counting regime. Acta Physica Sinica, 2015, 64(22): 224208. doi: 10.7498/aps.64.224208
    [15] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [16] Cao Bei, Luo Xiu-Juan, Chen Ming-Lai, Zhang Yu. All-phase target reconstruction method for coherent field imaging. Acta Physica Sinica, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [17] Lian Tian-Hong, Wang Shi-Yu, Cai De-Fang, Li Bing-Bin, Guo Zhen. Coherent emitting of multiple sub-beams for small target detection. Acta Physica Sinica, 2014, 63(3): 034203. doi: 10.7498/aps.63.034203
    [18] Tang Qian, Zhao Bao-Chang, Qiu Yue-Hong, Zhang Chun-Min, Mu Ting-Kui. Technology of polarization interference imaging spectral based on pupil division and angle shear. Acta Physica Sinica, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [19] Li Yan-Hui, Wu Zhen-Sen, Gong Yan-Jun, Zhang Geng, Wang Ming-Jun. Laser one-dimensional range profile. Acta Physica Sinica, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [20] Jia Dong-Yao, Ding Tian-Huai. A method for transmitted detection of lint trash and imaging target enhancement. Acta Physica Sinica, 2005, 54(9): 4058-4064. doi: 10.7498/aps.54.4058
Metrics
  • Abstract views:  5349
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2016
  • Accepted Date:  17 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map