搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于multisine激励与整周期采样的多频电阻抗成像系统设计

杨宇祥 白世展 林海军 李建闽 张甫

引用本文:
Citation:

基于multisine激励与整周期采样的多频电阻抗成像系统设计

杨宇祥, 白世展, 林海军, 李建闽, 张甫

Design of multi-frequency electrical impedance tomography system based on multisine excitation and integer-period sampling

Yang Yu-Xiang, Bai Shi-Zhan, Lin Hai-Jun, Li Jian-Min, Zhang Fu
PDF
HTML
导出引用
  • 本文从周期信号的整周期采样无频谱泄露这一原理出发, 提出基于multisine信号的整周期采样理论, 从理论上推导出满足multisine整周期采样的采样率设置条件, 构建了基于FPGA+数模转换器+模数转换器的整周期采样实现方法, 研制了一种基于multisine激励和整周期采样的新型多频电阻抗成像(mfEIT)系统; 设计了胡萝卜棒+黄瓜棒的双目标成像模型, 并进行了多频时差成像和频差成像实验. 实验表明, 本mfEIT系统能够在一个基波周期(1 ms)内实现20个频率点(2—997 kHz)多目标组织边界的全频阻抗测量, 成像结果可区分具有不同电特性生物组织的结构与位置. 本文提出的基于multisine信号的整周期采样理论及其实现方法, 只需一个multisine基波周期即可完成一次全频阻抗测量, 为研制高速mfEIT系统奠定了理论和技术基础.
    Starting from the principle that the integer-period sampling (IPS) of periodic signals is free of spectrum leakage, in this paper we propose the multisine-IPS theory, deduce theoretically the sampling rate setting formula of multisine-IPS condition for the first time, and build its realization method based on field-programmable gate array (FPGA) plus digital-to-analog converter (DAC) plus analog-to-digital converter (ADC). A new multi-frequency electrical impedance tomography (mfEIT) system based on multisine excitation and its IPS theory is developed, and a dual-target imaging model including a carrot stick and a cucumber stick is designed. The experiments of multi-frequency time-difference imaging and frequency-difference imaging are carried out on the mfEIT system. The experimental results show that the newly-designed mfEIT system can achieve full-band impedance measurements on multiple objective tissue boundary at 20 frequency points (2–997 kHz) within one fundamental period (1 ms), and the structure and position of biological tissues with different electrical properties can also be distinguished from the resulting images. The proposed multisine-IPS theory and its implementation method can complete a full-band impedance measurement within one multisine fundamental period, which lays a theoretical and technical foundation for developing high-speed mfEIT system.
      通信作者: 李建闽, ljmdzyx@163.com ; 张甫, fuzhang@hunnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 32171366, 31671002)、湖南省自然科学基金(批准号: 2021JJ30014, 2021JJ40359)和湖南省研究生科研创新项目(批准号: CX20210494)资助的课题
      Corresponding author: Li Jian-Min, ljmdzyx@163.com ; Zhang Fu, fuzhang@hunnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 32171366, 31671002), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2021JJ30014, 2021JJ40359), and the Graduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20210494)
    [1]

    Wu Y, Chen B, Liu K, Zhu C, Pan H, Jia J, Wu H, Yao J 2021 IEEE Sens. J. 21 9277Google Scholar

    [2]

    Coolen T, Lolli V, Sadeghi N, Rovai A, Trotta N, Taccone F S, Creteur J, Henrard S, Goffard J C, Dewitte O J N 2020 Neurology 95 e2016Google Scholar

    [3]

    Adhikari, Das N C 2020 Int. J. Comput. 38 73

    [4]

    Cherepenin V, Karpov A, Korjenevsky A, Kornienko V, Mazaletskaya A, Mazourov D, Meister D 2001 Physiol. Meas. 22 9Google Scholar

    [5]

    Pulletz S, Adler A, Kott M, Elke G, Gawelczyk B, Schädler D, Zick G, Weiler N, Frerichs I 2012 J. Crit. Care 27 323

    [6]

    Aristovich K Y, Packham B C, Koo H, Dos Santos G S, McEvoy A, Holder D S 2016 Neuro Image 124 204Google Scholar

    [7]

    Chen H, Yao J, Yang L, Liu K, Chen B, Li J, Takei M 2020 IEEE Sens. J. 21 3653

    [8]

    Aguiar S S, Robens A, Boehm A, Leonhardt S, Teichmann D 2016 Sensors 16 1158

    [9]

    Grimnes S, Martinsen O G 2015 Bioimpedance and Bioelectricity Basics (3rd Ed.) (London: Academic Press)

    [10]

    Goren N, Avery J, Dowrick T, Mackle E, Witkowska-Wrobel A, Werring D, Holder D 2018 Sci. Data 5 180112Google Scholar

    [11]

    姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛 2020 69 163301Google Scholar

    Yao J F, Wan J F, Yang L, Liu K, Chen B, Wu H T 2020 Acta Phys. Sin. 69 163301Google Scholar

    [12]

    Padilha Leitzke J, Zangl H 2020 Sensors 20 5160Google Scholar

    [13]

    Yunjie Y, Jiabin J 2017 Rev. Sci. Instrum. 88 085110Google Scholar

    [14]

    Yang L, Xu C, Dai M, Fu F, Shi X, Dong X 2016 Physiol. Meas. 37 2317Google Scholar

    [15]

    Cao L, Li H, Xu C, Dai M, Ji Z, Shi X, Dong X, Fu F, Yang B 2019 Biomed. Eng. Online 18 84Google Scholar

    [16]

    Bai X, Liu D, Wei J, Bai X, Sun S, Tian W 2021 Biosensors 11 176Google Scholar

    [17]

    Avery J, Dowrick T, Faulkner M, Goren N, Holder D 2017 Sensors 17 280Google Scholar

    [18]

    Louarroudi E, Sanchez B 2017 Physiol. Meas. 38 N73Google Scholar

    [19]

    Kallel A Y, Bouchaala D, Kanoun O 2021 Meas. Sci. Technol. 32 084011Google Scholar

    [20]

    Oh T I, Koo H, Lee K H, Kim S M, Lee J, Kim S W, Seo J K, Woo E J 2008 Physiol. Meas. 29 295Google Scholar

    [21]

    Jaan O, Mart M 2018 J. Electrical Bioimpedance 9 133Google Scholar

    [22]

    Yuxiang Y, Lianhuan W, Peipei W, Xiufang Y, Fu Z, He W, Zhaosheng T 2015 Physiol. Meas. 36 1995Google Scholar

    [23]

    Kusche R, Malhotra A, Ryschka M, Ardelt G, Klimach P, Kaufmann S 2015 Electronics 4 507Google Scholar

    [24]

    Tan C, Liu S, Jia J, Dong F 2020 IEEE Trans. Instrum. Meas. 69 144Google Scholar

    [25]

    Min M, Land R, Paavle T, Parve T, Annus P, Trebbels D 2011 Physiol. Meas. 32 945Google Scholar

    [26]

    Sanchez B, Vandersteen G, Bragos R, Schoukens J 2012 Meas. Sci. Technol. 23 105501Google Scholar

    [27]

    Yan Z, Xu Y, Han B, Dong F 2020 IEEE Trans. Instrum. Meas. 70 1

    [28]

    Yang Y, Zhang F, Tao K, Sanchez B, Wen H, Teng Z 2015 Physiol. Meas. 36 895Google Scholar

    [29]

    Schoukens J, Pintelon R, van der Ouderaa E, Renneboog J 1988 IEEE Trans. Instrum. Meas. 37 342Google Scholar

    [30]

    Schroeder M R 1970 IEEE Trans. Inform. Theory 16 85Google Scholar

    [31]

    Ojarand J, Min M, Annus P 2014 Physiol. Meas. 35 1019Google Scholar

    [32]

    邓娟, 陈素华, 沙洪, 赵舒, 任超世 2012 中国生物医学工程学报 31 807Google Scholar

    Deng J, Chen S H, Sha H, Zhao S, Ren C S. 2012 Chinese J. Biomed. Eng. 31 807Google Scholar

    [33]

    Kao T J, Isaacson D, Newell J C, Saulnier G J 2006 Physiol. Meas. 27 S1Google Scholar

    [34]

    Yang Y, Jia J 2017 IEEE Trans. Instrum. Meas. 66 2295Google Scholar

  • 图 1  基于multisine整周期采样的多频阻抗测量原理图

    Fig. 1.  Schematic diagram of multi-frequency impedance measurement based on integer-period sampling.

    图 2  基于FPGA的mfEIT系统结构原理图

    Fig. 2.  System structure diagram of the mfEIT system based on FPGA.

    图 3  mfEIT系统实物图

    Fig. 3.  Photo of the mfEIT system.

    图 4  Multisine信号 (a)时域波形; (b)频谱分布

    Fig. 4.  Multisine signal: (a) Time domain waveform; (b) spectrum distribution.

    图 5  均质场边界阻抗谱

    Fig. 5.  Boundary impedance spectroscopy of homogeneous field.

    图 6  mfEIT系统的时差成像

    Fig. 6.  Time difference images of the mfEIT system.

    图 7  mfEIT系统的频差成像

    Fig. 7.  Frequency difference images of the mfEIT system.

    表 1  合成的包含20个等幅值伪对数频谱分布的multisine信号频率、相位

    Table 1.  Frequencies and phases of the synthesized multisine signal with equivalent amplitude and pseudo-logarithmic spectral distribution.

    谐波次数
    qm
    频率fm/kHz
    fm = qmf0
    相位φm
    /rad
    谐波次数
    qm
    频率fm/kHz
    fm = qmf0
    相位φm
    /rad
    q1 2 1.3533 q11 53 –1.2911
    q2 3 0.7238 q12 73 1.6648
    q3 5 0.0514 q13 101 –1.0052
    q4 7 –0.2595 q14 139 2.2122
    q5 11 0.4941 q15 193 2.0298
    q16 13 –0.4792 q16 269 –0.8110
    q17 17 –0.0024 q17 373 1.9261
    q18 19 –2.1192 q18 521 1.4672
    q19 29 1.9941 q19 719 0.2117
    q10 37 1.6186 q20 997 0.4343
    下载: 导出CSV

    表 2  Multisine信号20个频率点的通道信噪比平均值及标准差

    Table 2.  Average and standard deviation of the channel SNR at 20 frequency points of the multisine signal.

    频率fm
    /kHz
    信噪比SNR
    /dB
    标准差
    / ±
    频率fm
    /kHz
    信噪比SNR
    /dB
    标准差
    / ±
    2 46.7 4.8 53 55.7 6.0
    3 51.3 5.4 73 55.8 5.7
    5 53.4 6.2 101 54.7 6.0
    7 55.0 5.8 139 51.6 5.0
    11 55.4 6.3 193 54.6 6.1
    13 55.4 6.4 269 56.1 6.7
    17 54.7 6.3 373 57.0 7.3
    19 54.6 5.9 521 58.1 7.9
    29 53.6 5.5 719 56.0 7.6
    37 55.1 5.8 997 56.6 8.0
    下载: 导出CSV
    Baidu
  • [1]

    Wu Y, Chen B, Liu K, Zhu C, Pan H, Jia J, Wu H, Yao J 2021 IEEE Sens. J. 21 9277Google Scholar

    [2]

    Coolen T, Lolli V, Sadeghi N, Rovai A, Trotta N, Taccone F S, Creteur J, Henrard S, Goffard J C, Dewitte O J N 2020 Neurology 95 e2016Google Scholar

    [3]

    Adhikari, Das N C 2020 Int. J. Comput. 38 73

    [4]

    Cherepenin V, Karpov A, Korjenevsky A, Kornienko V, Mazaletskaya A, Mazourov D, Meister D 2001 Physiol. Meas. 22 9Google Scholar

    [5]

    Pulletz S, Adler A, Kott M, Elke G, Gawelczyk B, Schädler D, Zick G, Weiler N, Frerichs I 2012 J. Crit. Care 27 323

    [6]

    Aristovich K Y, Packham B C, Koo H, Dos Santos G S, McEvoy A, Holder D S 2016 Neuro Image 124 204Google Scholar

    [7]

    Chen H, Yao J, Yang L, Liu K, Chen B, Li J, Takei M 2020 IEEE Sens. J. 21 3653

    [8]

    Aguiar S S, Robens A, Boehm A, Leonhardt S, Teichmann D 2016 Sensors 16 1158

    [9]

    Grimnes S, Martinsen O G 2015 Bioimpedance and Bioelectricity Basics (3rd Ed.) (London: Academic Press)

    [10]

    Goren N, Avery J, Dowrick T, Mackle E, Witkowska-Wrobel A, Werring D, Holder D 2018 Sci. Data 5 180112Google Scholar

    [11]

    姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛 2020 69 163301Google Scholar

    Yao J F, Wan J F, Yang L, Liu K, Chen B, Wu H T 2020 Acta Phys. Sin. 69 163301Google Scholar

    [12]

    Padilha Leitzke J, Zangl H 2020 Sensors 20 5160Google Scholar

    [13]

    Yunjie Y, Jiabin J 2017 Rev. Sci. Instrum. 88 085110Google Scholar

    [14]

    Yang L, Xu C, Dai M, Fu F, Shi X, Dong X 2016 Physiol. Meas. 37 2317Google Scholar

    [15]

    Cao L, Li H, Xu C, Dai M, Ji Z, Shi X, Dong X, Fu F, Yang B 2019 Biomed. Eng. Online 18 84Google Scholar

    [16]

    Bai X, Liu D, Wei J, Bai X, Sun S, Tian W 2021 Biosensors 11 176Google Scholar

    [17]

    Avery J, Dowrick T, Faulkner M, Goren N, Holder D 2017 Sensors 17 280Google Scholar

    [18]

    Louarroudi E, Sanchez B 2017 Physiol. Meas. 38 N73Google Scholar

    [19]

    Kallel A Y, Bouchaala D, Kanoun O 2021 Meas. Sci. Technol. 32 084011Google Scholar

    [20]

    Oh T I, Koo H, Lee K H, Kim S M, Lee J, Kim S W, Seo J K, Woo E J 2008 Physiol. Meas. 29 295Google Scholar

    [21]

    Jaan O, Mart M 2018 J. Electrical Bioimpedance 9 133Google Scholar

    [22]

    Yuxiang Y, Lianhuan W, Peipei W, Xiufang Y, Fu Z, He W, Zhaosheng T 2015 Physiol. Meas. 36 1995Google Scholar

    [23]

    Kusche R, Malhotra A, Ryschka M, Ardelt G, Klimach P, Kaufmann S 2015 Electronics 4 507Google Scholar

    [24]

    Tan C, Liu S, Jia J, Dong F 2020 IEEE Trans. Instrum. Meas. 69 144Google Scholar

    [25]

    Min M, Land R, Paavle T, Parve T, Annus P, Trebbels D 2011 Physiol. Meas. 32 945Google Scholar

    [26]

    Sanchez B, Vandersteen G, Bragos R, Schoukens J 2012 Meas. Sci. Technol. 23 105501Google Scholar

    [27]

    Yan Z, Xu Y, Han B, Dong F 2020 IEEE Trans. Instrum. Meas. 70 1

    [28]

    Yang Y, Zhang F, Tao K, Sanchez B, Wen H, Teng Z 2015 Physiol. Meas. 36 895Google Scholar

    [29]

    Schoukens J, Pintelon R, van der Ouderaa E, Renneboog J 1988 IEEE Trans. Instrum. Meas. 37 342Google Scholar

    [30]

    Schroeder M R 1970 IEEE Trans. Inform. Theory 16 85Google Scholar

    [31]

    Ojarand J, Min M, Annus P 2014 Physiol. Meas. 35 1019Google Scholar

    [32]

    邓娟, 陈素华, 沙洪, 赵舒, 任超世 2012 中国生物医学工程学报 31 807Google Scholar

    Deng J, Chen S H, Sha H, Zhao S, Ren C S. 2012 Chinese J. Biomed. Eng. 31 807Google Scholar

    [33]

    Kao T J, Isaacson D, Newell J C, Saulnier G J 2006 Physiol. Meas. 27 S1Google Scholar

    [34]

    Yang Y, Jia J 2017 IEEE Trans. Instrum. Meas. 66 2295Google Scholar

  • [1] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法.  , 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法.  , 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [3] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法.  , 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [4] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法.  , 2021, (): . doi: 10.7498/aps.70.20211600
    [5] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像.  , 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [6] 杨宇祥, 白世展, 林海军, 李建闽, 张甫. 基于multisine激励与整周期采样的多频电阻抗成像系统设计.  , 2021, (): . doi: 10.7498/aps.70.20211375
    [7] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较.  , 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [8] 谭志中, 张庆华. 基于递推-变换方法计算圆柱面网络的等效电阻及复阻抗.  , 2017, 66(7): 070501. doi: 10.7498/aps.66.070501
    [9] 贾晓静, 苏海莹, 刘华艳, 许彦彬, 康振峰, 丁铁柱. 周期数N不同的(Ce0.8SmO2-)/YSZ)N超晶格薄膜的阻抗性质.  , 2017, 66(1): 016801. doi: 10.7498/aps.66.016801
    [10] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术.  , 2017, 66(16): 164301. doi: 10.7498/aps.66.164301
    [11] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法.  , 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [12] 闫晓娟, 马维光, 谭巍. 外腔共振和频系统中阻抗匹配的理论研究.  , 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [13] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计.  , 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [14] 杨丹青, 王莉, 王新龙. 基于周期结构负反射的远场增强成像研究.  , 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [15] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究.  , 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [16] 王卓, 王与烨, 姚建铨, 王鹏. 周期结构GaAs晶体ps脉冲差频产生窄带THz辐射的研究.  , 2010, 59(5): 3249-3254. doi: 10.7498/aps.59.3249
    [17] 鲍丙豪, 宋雪丰, 任乃飞, 李长生. 非晶态合金薄带与膜的巨磁电阻抗效应理论及计算.  , 2006, 55(7): 3698-3704. doi: 10.7498/aps.55.3698
    [18] 余建华, 黄建军. 射频放电阻抗测量用于等离子体诊断研究.  , 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
    [19] 杨世平, 戴建华, 张洪钧, 杨朝潢. 光学双稳态中从三频准周期运动过渡到混沌.  , 1989, 38(12): 1937-1944. doi: 10.7498/aps.38.1937
    [20] 郝柏林, 张淑誉. 研究强迫非线性振子中倍周期分岔和“混乱”现象的分频采样方法.  , 1983, 32(2): 198-208. doi: 10.7498/aps.32.198
计量
  • 文章访问数:  4669
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-25
  • 修回日期:  2021-10-30
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-03-05

/

返回文章
返回
Baidu
map