搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究

张海鹏 赵昌哲 鞠晓璐 汤杰 肖体乔

引用本文:
Citation:

基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究

张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔

Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm

Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao
PDF
HTML
导出引用
  • X射线鬼成像是一种低剂量、非定域成像方法, 对医疗诊断和生物成像具有重要意义. 在基于晶体劳厄衍射分光的X射线鬼成像中, 晶体振动会造成衍射光路上散斑的模糊, 进而导致利用关联方法重构图像衬度和空间分辨的降低. 本文系统分析了衍射光路上散斑图像的模糊程度对归一化二阶关联函数$ {g}^{\left(2\right)} $的最大值和半高全宽的影响. 模糊程度的增强会导致$ {g}^{\left(2\right)} $最大值的减小和半高全宽的展宽, 在理论上证明了模糊程度会引起重构图像的衬度和分辨能力的降低. 为解决上述问题, 本文在衍射光路和直通光路的直接关联方法($ {G}_{\mathrm{L}\mathrm{H}} $)的基础上提出$ {G}_{\mathrm{L}\mathrm{H}}E $方法($ {G}_{\mathrm{L}\mathrm{H}} $ enhanced method). 模拟实验表明$ {G}_{\mathrm{L}\mathrm{H}}E $算法能同时改善图像衬度和提高重构分辨率, 并且模糊程度增强时, $ {G}_{\mathrm{L}\mathrm{H}}E $算法重构图像的峰值信噪比与先对直通光路的散斑图像进行高斯滤波处理再进行双光路关联计算方法($ {G}_{\mathrm{L}\mathrm{L}} $)的差距扩大, 同时保证其对噪声的鲁棒性. 本文为晶体衍射分光的X射线鬼成像的实际应用提供可行的思路.
    X-ray ghost imaging is a low-dose, non-localized imaging method, which is of great significance in medical diagnosis and biological imaging. In crystal diffraction based X-ray ghost imaging, the blurring patterns in the diffracted beam, caused by the crystal vibration, can result in a reduction in the contrast and spatial resolution of the reconstructed imaged by ensemble average. In the paper, we systematically analyze the influence of the blurring degree of the speckle patterns from the diffracted beam on the normalized second-order intensity correlation function $ {g}^{\left(2\right)} $ numerically and theoretically. Both demonstrates that as the blurring degree increases, the maximum value of $ {g}^{\left(2\right)} $ decreases and the full width at half maximum broadens, which theoretically proves the blurring degree relating to image quality. In order to solve the above problem, in the paper we propose a $ {G}_{\mathrm{L}\mathrm{H}} $ enhanced ($ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $) method to optimize the image quality based on the scheme ($ {G}_{\mathrm{L}\mathrm{H}} $) which directly correlates the bucket signals in diffracted beam with the high-definition patterns in transmitted beam. The simulation experiments exhibit that the $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ method can improve both the image contrast and the spatial resolution simultaneously. As the blurring degree increases, the difference between the peak signal-to noise ratio of the reconstructed image by the iterative method and that by the scheme $ {(G}_{\mathrm{L}\mathrm{L}}) $ which preprocess the speckle patterns in the transmitted beam through Gaussian filtering, becomes greater. Furthermore, the ${G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ is almost immune to the additive noise. In summary, the present study provides a feasible idea for the practical application of X-ray ghost imaging based on crystal diffraction.
      通信作者: 张海鹏, zhanghaipeng@sinap.ac.cn ; 肖体乔, xiaotiqiao@zjlab.org.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0206004, 2017YFA0206002, 2018YFC0206002, 2017YFA0403801)和国家自然科学基金(批准号:81430087)资助的课题
      Corresponding author: Zhang Hai-Peng, zhanghaipeng@sinap.ac.cn ; Xiao Ti-Qiao, xiaotiqiao@zjlab.org.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0206004, 2017YFA0206002, 2018YFC0206002, 2017YFA0403801) and the National Natural Science Foundation of China (Grant No. 81430087).
    [1]

    Bennink R S, Bentley S J, Boyd R W, Howell J C 2004 Phys. Rev. Lett. 92 033601Google Scholar

    [2]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [3]

    Valencia A, Scarcelli G, D’Angelo M, Shih Y 2005 Phys. Rev. Lett. 94 063601Google Scholar

    [4]

    Pittman T, Shih Y, Strekalov D, Sergienko A 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar

    [6]

    Chan K W C, O'Sullivan M N, Boyd R W 2009 Opt. Lett. 34 3343Google Scholar

    [7]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [8]

    Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H 1995 Phys. Rev. Lett. 74 3600Google Scholar

    [9]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [10]

    Yu W K, Liu X F, Yao X R, Wang C, Zhai G J, Zhao Q 2014 Phys. Rev. A 378 3406

    [11]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [12]

    Shi D, Fan C, Zhang P, Zhang J, Shen H, Qiao C, Wang Y 2012 Opt. Express 20 27992Google Scholar

    [13]

    李明飞, 阎璐, 杨然, 寇军, 刘院省 2019 68 094204Google Scholar

    Li M F, Yan L, Yang R, Kou J, Liu Y X 2019 Acta Phys. Sin. 68 094204Google Scholar

    [14]

    Oh J E, Cho Y W, Scarcelli G, Kim Y H 2013 Opt. Lett. 38 682Google Scholar

    [15]

    Zhao C, Gong W, Chen M, Li E, Wang H, Wendong X, Han A 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [16]

    Ma S, Liu Z, Wang C, Hu C, Li E, Gong W, Tong Z, Wu J, Shen X, Han S 2019 Opt. Express 27 13219Google Scholar

    [17]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [18]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602Google Scholar

    [19]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144Google Scholar

    [20]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [21]

    Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V, Wu L A 2010 Opt. Lett. 35 1166Google Scholar

    [22]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695Google Scholar

    [23]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar

    [24]

    Kingston A M, Myers G R, Pelliccia D, Salvemini F, Bevitt J J, Garbe U, Paganin D M 2020 Phys. Rev. A 101 053844Google Scholar

    [25]

    Pelliccia D, Olbinado M, Rack A, Kingston A, Myers G, Paganin D 2018 IUCrJ 5 428Google Scholar

    [26]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [27]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [28]

    Klein Y, Schori A, Dolbnya I P, Sawhney K, Shwartz S 2019 Opt. Express 27 3284Google Scholar

    [29]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [30]

    Schori A, Borodin D, Tamasaku K, Shwartz S 2018 Phys. Rev. A 97 063804Google Scholar

    [31]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [32]

    Yu H, Lu R, Han S, Xie H, Du G, Xiao T, Zhu D 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [33]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [34]

    孙海峰, 包为民, 方海燕, 李小平 2014 63 069701Google Scholar

    Sun H F, Bao F W, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [35]

    刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴 令安, 翟光杰 2013 62 184205Google Scholar

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205Google Scholar

    [36]

    Zhao C Z, Si S Y, Zhang H P, Xue L , Li Z L, Xiao T Q 2021 Acta Phys. Sin. 70Google Scholar

  • 图 1  基于晶体衍射分光的X射线鬼成像示意图

    Fig. 1.  Schematic diagram of X-ray ghost imaging based on the beam splitter of crystal diffraction.

    图 2  一致性和模糊程度关系

    Fig. 2.  Consistency vs ambiguity.

    图 3  $ \sigma =1.3 $时光强归一化二阶关联的理论和模拟在x方向上的曲线图 (a) $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}\mathrm{和}{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $的模拟在x方向上的曲线图; (b) ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $$ \mathrm{和}{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$的理论在x方向上的曲线图

    Fig. 3.  The theoretical and simulated curves of the normalized second-order correlation of light intensity in x direction when $ \sigma =1.3: $ (a) The simulated curves of $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $ and $ {g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $ in x direction; (b) the theoretical curves of $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $ and $ {g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $ in x direction.

    图 4  $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $$ {g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)} $在理论和模拟上随模糊程度$ \sigma $的变化曲线图 (a) $ {\mathrm{g}}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $${g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$在理论和模拟的最大值随$ \sigma $的变化; (b) $ {g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)} $${g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$在理论和模拟的半高全宽随$ \sigma $的变化

    Fig. 4.  ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}~\mathrm{and}~{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$ vary with the blur degree $ \sigma $ in theory and simulation: (a) The theoretical and simulated maximum of ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}\mathrm{~and~}{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$ vary with $ \sigma $; (b) the FWHM of ${g}_{\mathrm{L}\mathrm{L}}^{\left(2\right)}~\mathrm{and}~{g}_{\mathrm{L}\mathrm{H}}^{\left(2\right)}$ vary with $ \sigma $ in theory and simulation.

    图 5  ${G}_{\mathrm{L}\mathrm{L}} $$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法重构图像 (a) 物体图像; (b)—(f) 不同标准差($ \sigma $ = 0.7, 1.0, 1.3, 1.6, 1.9)时$ {G}_{\mathrm{L}\mathrm{L}} $恢复的图像; (g)$ {G}_{\mathrm{H}\mathrm{H}} $重构的图像; (h)—(l) 不同标准差($ \sigma $ = 0.7, 1.0, 1.3, 1.6, 1.9)时$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法恢复的图像.

    Fig. 5.  Images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $and iterative method: (a) The object image; (b)-(f) the images are retrieved by $ {G}_{\mathrm{L}\mathrm{L}} $ with $ \sigma $ set as 0.7, 1.0, 1.3, 1.6, 1.9; (g) the image restored by $ {G}_{\mathrm{H}\mathrm{H}} $; (h)-(l) the images are reconstructed by iterative method when $ \sigma $ is 0.7, 1.0, 1.3, 1.6, 1.9.

    图 6  不同算法重构图像的PSNR随模糊衬度的变化曲线

    Fig. 6.  The PSNR curves of reconstructed images with different algorithms vary with blur degree.

    图 7  $ {G}_{\mathrm{L}\mathrm{L}} $$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法重构图像中间部位的截面轮廓线:(a) 黑线是物体的截面轮廓线, 即图5(a)中间区域的平均灰度变化, 其余分别是$ {G}_{\mathrm{L}\mathrm{L}} $方法在$ \sigma $为0.7, 1.0, 1.3, 1.6, 1.9时重构图像的截面轮廓线, 即图5(b)图5(f)的中间区域的平均灰度变化; (b) 黑线是GHH重构图像的截面轮廓线, 即图5(g)中间区域的平均灰度变化, 其余是$ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $方法在$ \sigma $为0.7, 1.0, 1.3, 1.6, 1.9时重构图像的截面轮廓线,即图5(h)图5(l)的中间区域的平均灰度变化.

    Fig. 7.  Line profiles of the middle parts in the reconstructed images by $ {G}_{\mathrm{L}\mathrm{L}} $ and $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $: (a) The black curve is the line profile of the object, that is the mean grayscale change of the middle part in Fig. 5(a), and the rest is the line profiles of the images retrieved by $ {G}_{\mathrm{L}\mathrm{L}} $ with $ \sigma $ set as 0.7, 1.0, 1.3, 1.6, 1.9, that is, the mean grayscale change of the middle part in Fig. 5(b) to Fig. 5(f); (b) the black curve is the line profile of the image retrieved by $ {G}_{\mathrm{H}\mathrm{H}} $, that is the mean grayscale change of the middle part in Fig. 5(g), and the rest is the line profiles of the images restored by $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ when $ \sigma $ is 0.7, 1.0, 1.3, 1.6, 1.9, that is, the mean grayscale change of the middle part in Fig. 5(h) to Fig. 5(l).

    图 8  $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $在不同噪声下重构图像: (a), (g), (m) 无噪声时$ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $重构的图像; (b)—(f) $ {\mathrm{G}}_{\mathrm{L}\mathrm{L}} $在均值为0.1, 标准差为0.05, 0.1, 0.15, 0.2, 0.25时重构的图像; (i)—(l) $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $在均值为0.1, 标准差为0.05, 0.1, 0.15, 0.2, 0.25时重构的图像; (n)—(r) $ {G}_{\mathrm{H}\mathrm{H}} $在均值为0.1, 标准差为0.05, 0.1, 0.15, 0.2, 0.25时重构的图像

    Fig. 8.  Images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $ under different noise: (a), (g), (m) the images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $ without noise; (b)–(f) the images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $ under the noise with the mean of 0.1 and the standard deviation of 0.05, 0.1, 0.15, 0.2, 0.25 respectively; (i)–(l) the images reconstructed by $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $ under the noise with the mean of 0.1 and the standard deviation of 0.05, 0.1, 0.15, 0.2, 0.25 respectively; (n)–(r) the images reconstructed by $ {G}_{\mathrm{H}\mathrm{H}} $ under the noise with the mean of 0.1 and the standard deviation of 0.05, 0.1, 0.15, 0.2, 0.25 respectively.

    图 9  $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $在不同噪声下重构图像的PSNR, 其中标准差$ {\sigma }_{\mathrm{N}} $为0表示没有噪声(此时噪声均值$ {\mu }_{\mathrm{N}} $也为0)

    Fig. 9.  PSNRs of images reconstructed by $ {G}_{\mathrm{L}\mathrm{L}} $, $ {G}_{\mathrm{L}\mathrm{H}}\mathrm{E} $, $ {G}_{\mathrm{H}\mathrm{H}} $ under different noise, where the standard deviation $ {\sigma }_{\mathrm{N}} $of 0 indicates there is no noise (at this time the mean $ {\mu }_{\mathrm{N}} $ of noise is also 0).

    Baidu
  • [1]

    Bennink R S, Bentley S J, Boyd R W, Howell J C 2004 Phys. Rev. Lett. 92 033601Google Scholar

    [2]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [3]

    Valencia A, Scarcelli G, D’Angelo M, Shih Y 2005 Phys. Rev. Lett. 94 063601Google Scholar

    [4]

    Pittman T, Shih Y, Strekalov D, Sergienko A 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar

    [6]

    Chan K W C, O'Sullivan M N, Boyd R W 2009 Opt. Lett. 34 3343Google Scholar

    [7]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [8]

    Strekalov D V, Sergienko A V, Klyshko D N, Shih Y H 1995 Phys. Rev. Lett. 74 3600Google Scholar

    [9]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [10]

    Yu W K, Liu X F, Yao X R, Wang C, Zhai G J, Zhao Q 2014 Phys. Rev. A 378 3406

    [11]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [12]

    Shi D, Fan C, Zhang P, Zhang J, Shen H, Qiao C, Wang Y 2012 Opt. Express 20 27992Google Scholar

    [13]

    李明飞, 阎璐, 杨然, 寇军, 刘院省 2019 68 094204Google Scholar

    Li M F, Yan L, Yang R, Kou J, Liu Y X 2019 Acta Phys. Sin. 68 094204Google Scholar

    [14]

    Oh J E, Cho Y W, Scarcelli G, Kim Y H 2013 Opt. Lett. 38 682Google Scholar

    [15]

    Zhao C, Gong W, Chen M, Li E, Wang H, Wendong X, Han A 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [16]

    Ma S, Liu Z, Wang C, Hu C, Li E, Gong W, Tong Z, Wu J, Shen X, Han S 2019 Opt. Express 27 13219Google Scholar

    [17]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [18]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602Google Scholar

    [19]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144Google Scholar

    [20]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [21]

    Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V, Wu L A 2010 Opt. Lett. 35 1166Google Scholar

    [22]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695Google Scholar

    [23]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar

    [24]

    Kingston A M, Myers G R, Pelliccia D, Salvemini F, Bevitt J J, Garbe U, Paganin D M 2020 Phys. Rev. A 101 053844Google Scholar

    [25]

    Pelliccia D, Olbinado M, Rack A, Kingston A, Myers G, Paganin D 2018 IUCrJ 5 428Google Scholar

    [26]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [27]

    Zhang A X, He Y H, Wu L A, Chen L M, Wang B B 2018 Optica 5 374Google Scholar

    [28]

    Klein Y, Schori A, Dolbnya I P, Sawhney K, Shwartz S 2019 Opt. Express 27 3284Google Scholar

    [29]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [30]

    Schori A, Borodin D, Tamasaku K, Shwartz S 2018 Phys. Rev. A 97 063804Google Scholar

    [31]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [32]

    Yu H, Lu R, Han S, Xie H, Du G, Xiao T, Zhu D 2016 Phys. Rev. Lett. 117 113901Google Scholar

    [33]

    He Y H, Zhang A X, Li M F, Huang Y Y, Quan B G, Li D Z, Wu L A, Chen L M 2020 APL Photonics 5 056102Google Scholar

    [34]

    孙海峰, 包为民, 方海燕, 李小平 2014 63 069701Google Scholar

    Sun H F, Bao F W, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [35]

    刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴 令安, 翟光杰 2013 62 184205Google Scholar

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205Google Scholar

    [36]

    Zhao C Z, Si S Y, Zhang H P, Xue L , Li Z L, Xiao T Q 2021 Acta Phys. Sin. 70Google Scholar

  • [1] 孔梅梅, 薛银燕, 徐春生, 董媛, 刘悦, 潘世成, 赵瑞. 含有圆孔平板电极结构的双凸液体透镜的设计与分析.  , 2024, 73(1): 014207. doi: 10.7498/aps.73.20231291
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探.  , 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] 程志远, 马彩文, 马青. 激光光强扰动对相干场成像降质影响理论研究.  , 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [5] 张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋. 傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析.  , 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [6] 程志远, 马彩文, 罗秀娟, 张羽, 朱香平, 夏爱利. 抑制孔径间距误差影响的相干场成像质量提升方法研究.  , 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [7] 刘海岗, 许子健, 张祥志, 郭智, 邰仁忠. 中心挡板对扫描相干X射线衍射成像的影响.  , 2013, 62(15): 150702. doi: 10.7498/aps.62.150702
    [8] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用.  , 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [9] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用.  , 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [10] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究.  , 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [11] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响.  , 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [12] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究.  , 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [13] 刘政, 王胜千, 黄林海, 饶长辉. 相位平移误差与子孔径自身像差对稀疏光学合成孔径系统成像质量的综合影响分析.  , 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [14] 李国俊, 康学亮, 李永平. 二维蜂窝格子光子晶体的远场成像特性及界面对成像质量的影响.  , 2007, 56(11): 6403-6407. doi: 10.7498/aps.56.6403
    [15] 刘丽想, 杜国浩, 胡 雯, 谢红兰, 肖体乔. X射线同轴轮廓成像中影响成像质量的若干因素研究.  , 2007, 56(8): 4556-4564. doi: 10.7498/aps.56.4556
    [16] 黄万霞, 朱佩平, 袁清习, 王寯越, 舒 航, 胡天斗, 吴自玉. 衍射增强成像方法中两种晶体排列方式的对比研究.  , 2006, 55(10): 5178-5185. doi: 10.7498/aps.55.5178
    [17] 朱佩平, 袁清习, 黄万霞, 王寯越, 舒 航, 吴自玉, 冼鼎昌. 衍射增强成像原理.  , 2006, 55(3): 1089-1098. doi: 10.7498/aps.55.1089
    [18] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展.  , 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [19] 朱佩平, 王寯越, 袁清习, 田玉莲, 黄万霞, 黎 刚, 胡天斗, 姜晓明, 吴自玉. 两块晶体衍射增强成像方法研究.  , 2005, 54(1): 58-63. doi: 10.7498/aps.54.58
    [20] 陆学善, 梁敬魁. 从X射线的衍射强度测定晶体的德拜特征温度.  , 1981, 30(10): 1361-1368. doi: 10.7498/aps.30.1361
计量
  • 文章访问数:  5180
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-11-30
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回
Baidu
map