Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sheared-beam imaging of object with depth information

Lan Fu-Yang Luo Xiu-Juan Chen Ming-Lai Zhang Yu Liu Hui

Citation:

Sheared-beam imaging of object with depth information

Lan Fu-Yang, Luo Xiu-Juan, Chen Ming-Lai, Zhang Yu, Liu Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sheared-beam imaging technique is a non-conventional imaging method which can be used to image remote objects through atmospheric turbulence without needing any adaptive optics. In this imaging technique, the target is coherently illuminated by three laser beams which are laterally sheared at the transmitter plane and arranged into an L shape. In addition, each beam is modulated by a slight frequency shift. The speckle intensity signals scattered from the target are received by a detector array, and then the image of target can be reconstructed by computer algorithm. By far, most of studies in this field have focused on two-dimensional imaging. In real conditions, however, the surface of targets we are concerned about reveals that different depths introduce various phase delays in the scattering signal from target. This delay causes the phase-shift errors to appear between the ideal target Fourier spectrum and the Fourier spectrum received by detector array. Finally, this would result in poor image quality and low resolution. In this study, a three-dimensional target imaging model is established based on the two-dimensional target imaging model. The influence of modulated beat frequency between sheared beam and reference beam is studied on the objects with depth information, and the result shows that large beat frequency may have an adverse effect on reconstructed images. The simulation we have developed for this three-dimensional imaging model uses three targets with different shapes. Each target is divided into several sub-blocks, and we set different depth values (within 10 m) for these blocks. Then beat frequencies are increased from 5 Hz to about 1 MHz, respectively. At each pair of frequencies, the reconstructed image is recorded. Srehl ratio is used as the measure of the imaging quality. Computer simulation results show that the Srehl ratio of reconstructed images descends with the increase of beat frequency, which is fully consistent with the theory of three-dimensional target imaging proposed before. Meanwhile, we find that the depth distribution of target also has an effect on imaging quality. As for actual space targets, the maximum depth is usually not more than 10 m. Compared with the influence caused by beat frequencies, the effect produced by depth distribution is negligible. Therefore when a space target is imaged, beat frequencies play the major role in reconstructing high-quality image. The results presented in this paper indicate that in order to achieve better imaging quality in the practical application, it is necessary to select the smallest beat frequency according to the detector performance and keep the candidate frequencies away from the low-frequency noise of the detector.
      Corresponding author: Lan Fu-Yang, lanfuyang@opt.cn
    [1]

    Li X Y, Gao X, Tang J, Feng L J 2015 Acta Photon. Sin. 44 0611002 (in Chinese)[李希宇, 高昕, 唐嘉, 冯灵洁2015光子学报44 0611002]

    [2]

    Fienup J R 2010 Imaging Systems Tucson, Arizona, USA, June 7-8, 2010 IMD2

    [3]

    Hutchin R A 2012 US Patent 20120162631[2012-06-28]

    [4]

    Hutchin R A 2012 US Patent 20120292481[2012-11-22]

    [5]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [6]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [7]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [8]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [9]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [10]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [11]

    Goodman J W (Qin K C, Liu P S, Chen J B, Cao Q Z, translated) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) p54(in Chinese)[古德曼(秦克诚, 刘培森, 陈家碧, 曹其智译) 2013傅里叶光学导论(3版) (北京:电子工业出版社)第54页]

    [12]

    Fairchild P, Payne I 2013 IEEE Aerospace Conference Big Sky Montana, USA, March 2-9, 2013 p1

    [13]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [14]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [15]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽2015 64 124205]

    [16]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利2017 66 024203]

    [17]

    Liu P S 1987 Fundamentals of Statistical Optics of Speckle (Beijing:Science Press) p7(in Chinese)[刘培森1987散斑统计光学基础(北京:科学出版社)第7页]

    [18]

    Corser B A 1996 M. S. Dissertation (Lubbock:Texas Tech University)

    [19]

    Dong L 2014 Laser Infrared 44 1350 (in Chinese)[董磊2014激光与红外44 1350]

    [20]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese)[司庆丹, 罗秀娟, 曾志红2014 63 104203]

  • [1]

    Li X Y, Gao X, Tang J, Feng L J 2015 Acta Photon. Sin. 44 0611002 (in Chinese)[李希宇, 高昕, 唐嘉, 冯灵洁2015光子学报44 0611002]

    [2]

    Fienup J R 2010 Imaging Systems Tucson, Arizona, USA, June 7-8, 2010 IMD2

    [3]

    Hutchin R A 2012 US Patent 20120162631[2012-06-28]

    [4]

    Hutchin R A 2012 US Patent 20120292481[2012-11-22]

    [5]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [6]

    Landesman B T, Kindilien P, Pierson R E 1997 Opt. Express 1 312

    [7]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [8]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [9]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [10]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [11]

    Goodman J W (Qin K C, Liu P S, Chen J B, Cao Q Z, translated) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) p54(in Chinese)[古德曼(秦克诚, 刘培森, 陈家碧, 曹其智译) 2013傅里叶光学导论(3版) (北京:电子工业出版社)第54页]

    [12]

    Fairchild P, Payne I 2013 IEEE Aerospace Conference Big Sky Montana, USA, March 2-9, 2013 p1

    [13]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [14]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [15]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽2015 64 124205]

    [16]

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203 (in Chinese)[陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利2017 66 024203]

    [17]

    Liu P S 1987 Fundamentals of Statistical Optics of Speckle (Beijing:Science Press) p7(in Chinese)[刘培森1987散斑统计光学基础(北京:科学出版社)第7页]

    [18]

    Corser B A 1996 M. S. Dissertation (Lubbock:Texas Tech University)

    [19]

    Dong L 2014 Laser Infrared 44 1350 (in Chinese)[董磊2014激光与红外44 1350]

    [20]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese)[司庆丹, 罗秀娟, 曾志红2014 63 104203]

  • [1] Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing. Fast sampling based image reconstruction algorithm for sheared-beam imaging. Acta Physica Sinica, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] Chen Ming-Lai, Liu Hui, Zhang Yu, Luo Xiu-Juan, Ma Cai-Wen, Yue Ze-Lin, Zhao Jing. Spatial domain sparse reconstruction algorithm of sheared beam imaging. Acta Physica Sinica, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [3] Sun Xue-Ying, Liu Fei, Duan Jing-Bo, Niu Geng-Tian, Shao Xiao-Peng. Broadband scattering imaging technology based on common-mode rejection of polarization characteristic. Acta Physica Sinica, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [4] Xiao Xiao, Du Shu-Man, Zhao Fu, Wang Jing, Liu Jun, Li Ru-Xin. Single-shot optical speckle imaging based on pseudothermal illumination. Acta Physica Sinica, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [5] Cheng Zhi-Yuan, Li Zhi-Guo, She Wen-Ji, Xia Ai-Li. Compound denoising method of laser speckle noise in laser inherent field imaging. Acta Physica Sinica, 2019, 68(5): 054206. doi: 10.7498/aps.68.20181578
    [6] Yin Yu-Long, Sun Xiao-Bing, Song Mao-Xin, Chen Wei, Chen Fei-Nan. Phase delay error analysis of wave plate of division-of-amplitude full Stokes simultaneous polarization imaging system. Acta Physica Sinica, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [7] Lan Fu-Yang, Luo Xiu-Juan, Fan Xue-Wu, Zhang Yu, Chen Ming-Lai, Liu Hui, Jia Hui. Effect of uplink atmospheric wavefront distortion on image quality of sheared-beam imaging. Acta Physica Sinica, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [8] Li Jian-Xin, Bai Cai-Xun, Liu Qin, Shen Yan, Xu Wen-Hui, Xu Yi-Xuan. Beam shearing characteristic analysis of interferometric hyperspectral imaging system. Acta Physica Sinica, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [9] Lu Chang-Ming, Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Liu Hui, Lan Fu-Yang, Cao Bei. Target reconstruction algorithm for four-beam sheared coherent imaging. Acta Physica Sinica, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [10] Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Lan Fu-Yang, Liu Hui, Cao Bei, Xia Ai-Li. Sheared-beam imaging target reconstruction based on all-phase spectrum analysis. Acta Physica Sinica, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [11] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [12] Cao Bei, Luo Xiu-Juan, Chen Ming-Lai, Zhang Yu. All-phase target reconstruction method for coherent field imaging. Acta Physica Sinica, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [13] Chen Su-Ting, Hu Hai-Feng, Zhang Chuang. Surface roughness modeling based on laser speckle imaging. Acta Physica Sinica, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [14] Zhong Ya-Jun, Liu Jiao, Liang Wen-Qiang, Zhao Sheng-Mei. Multiple speckle patterns differential compressive ghost imaging. Acta Physica Sinica, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [15] Wang Da-Yong, Wang Yun-Xin, Guo Sha, Rong Lu, Zhang Yi-Zhuo. Research on speckle denoising by lensless Fourier transform holographic imaging with angular diversity. Acta Physica Sinica, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [16] Song Hong-Sheng, Cheng Chuan-Fu, Liu Man, Teng Shu-Yun, Zhang Ning-Yu. Experimental study on phase vortices of speckles and their propagation properties. Acta Physica Sinica, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [17] Lin Hao-Ming, Shao Yong-Hong, Qu Jun-Le, Yin Jun, Chen Si-Ping, Niu Han-Ben. Study on wide-field fluorescence sectioning microscopy based on dynamic speckle illumination. Acta Physica Sinica, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [18] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [19] Song Hong-Sheng, Cheng Chuan-Fu, Zhang Ning-Yu, Ren Xiao-Rong, Teng Shu-Yun, Xu Zhi-Zhan. Study on the dependence of the contrast of image speckles produced by strong scattering-object on random surface and imaging system. Acta Physica Sinica, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [20] YAO KUN, XU GUANG-YU, GUO GUANG-CAN, PENG HU, ZHOU PEI-LING. DYNAMIC LASER SPECKLES PRODUCED BY DOUBLE LIGHT BEAMS. Acta Physica Sinica, 1992, 41(2): 238-243. doi: 10.7498/aps.41.238
Metrics
  • Abstract views:  6083
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2017
  • Accepted Date:  15 May 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map