Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of extreme ultraviolet radiation of laser induced discharge plasma

Wang Jun-Wu Xuan Hong-Wen Yu Hang-Hang Wang Xin-Bing Vassily S. Zakharov

Citation:

Simulation of extreme ultraviolet radiation of laser induced discharge plasma

Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov
PDF
HTML
Get Citation
  • Extreme ultraviolet (EUV) light source is an important part of EUV lithography system in semiconductor manufacturing. The EUV light source requires that the 4p64dn-4p54dn+1 + 4dn–14f transitions of Sn8+~13+ ions emit thousands of lines which form unresolved transition arrays near 13.5 nm. Laser-induced discharge plasma is one of the important technical means to excite target into an appropriate plasma condition. Laser-induced discharge plasma has a simple structure and a low cost. It also has important applications in mask inspection, microscopic imaging, and spectral metrology. In the design and production process, there are many factors that can influence the conversion efficiency, such as current, electrode shape, and laser power density. The simulation method is a convenient way to provide guidance for optimizing the parameters. In this paper, a completed radiation magneto-hydrodynamic model is used to explore the dynamic characteristics of laser-induced discharge plasma and its EUV radiation characteristics. To improve the accuracy, a more detailed global equation of state model, an atomic structure calculation model including relativistic effect and a collision radiation model are proposed simultaneously. The simulation reconstructs the discharge process effectively, which is divided into five stages in the first half cycle of current, including expansion of laser plasma, column formation of discharge plasma, diffusion of discharge plasma, contraction of discharge plasma, and re-diffusion of discharge plasma. It is revealed that the pinch effect during the current rising time exerts a significant influence on the generation of EUV radiation. The conversion efficiency of EUV radiation is still low under our existing conditions, and hopefully a higher rising rate of current can improve the conversion efficiency in the future work.
      Corresponding author: Xuan Hong-Wen, xuanhw@aircas.ac.cn
    • Funds: Project supported by the Basic and Applied Basic Research Project of Guangzhou, China (Grant No. 2023A04J0024), the Talent Introduction Program of Chinese Academy of Sciences, China (Grant No. E33310030D), and the Aerospace Information Innovation Research Institute, Chinese Academy of Sciences, China (Grant Nos. E1Z1D101, E2Z2D101).
    [1]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [2]

    Tallents G, Wagenaars E, Pert G 2010 Nat. Photonics 4 809Google Scholar

    [3]

    Schriever G, Semprez O R, Jonkers J, Yoshioka M, Apetz R 2012 J. Microlithogr. Microfabr. Microsyst. 11 021104Google Scholar

    [4]

    Pankert J, Bergmann K, Klein J, Neff W, Rosier O, Seiwert S, Smith C, Probst S, Vaudrevange D, Siemons G, et al. 2004 Emerging Lithographic Technologies VIII Santa Clara, California, May 20, 2004 p152

    [5]

    Sayan S, Chakravorty K, Teramoto Y, Shirai T, Morimoto S, Watanabe H, Sato Y, Aoki K, Liang T, Tezuka Y, et al. 2021 Extreme Ultraviolet (EUV) Lithography XII San Jose, California, United States, March 23, 2021 p116090L

    [6]

    Teramoto Y, Santos B, et al. 2014 Extreme Ultraviolet (EUV) Lithography V San Jose, California, United States, April 17, 2014 p904813

    [7]

    Sayan S, Chakravorty K, Teramoto Y, Santos B, Nagano A, Ashizawa N, Shirai T, Morimoto S, Watanabe H, Aoki K, Sato Y 2023 Optical and EUV Nanolithography XXXVI San Jose, California, United States, May 26, 2023 pPC124940E

    [8]

    Kruecken T 2007 AIP Conf. Proc. 901 181Google Scholar

    [9]

    Hassanein A, Sizyuk V A, Tolkach V I, Morozov V A, Rice B J 2004 J. Micro/Nanolithgr. MEMS MOEMS 3 130Google Scholar

    [10]

    Hassanein A, Sizyuk V, Sizyuk T 2008 Emerging Lithographic Technologies XII, San Jose, California, United States, March 20, 2008 p692113

    [11]

    Zakharov V S, Juschkin L, Zakharov S V, O’Sullivan G, Sokel E, Tobin I 2012 International Workshop on EUV and Soft X-Ray Sources Dublin, Ireland, October 8–11, 2012 pS26

    [12]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Extreme Ultraviolet (EUV) Lithography San Jose, California, United States, March 22, 2010 p76363D

    [13]

    Masnavi M, Nakajima M, Hotta E, Horioka K, Niimi G, Sasaki A 2007 J. Appl. Phys. 101 033306Google Scholar

    [14]

    Tsygvintsev I P, Krukovskiy A Y, Gasilov V A, Novikov V G, Romanov I V, Paperny V L, Rupasov A A 2016 Mathematical Models and Computer Simulations 8 595Google Scholar

    [15]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O’Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O’Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

    [16]

    吴福源, 禇衍运, 叶繁, 李正宏, 杨建伦, Ramis R, 王真, 祁建敏, 周林, 梁川 2017 66 215201Google Scholar

    Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Wang Z, Qi J M, Zhou L, Liang C 2017 Acta Phys. Sin. 66 215201Google Scholar

    [17]

    陈忠旺, 宁成 2017 66 215202Google Scholar

    Cheng Z W, Ning C 2017 Acta Phys. Sin. 66 215202Google Scholar

    [18]

    Zakharov S V, Zakharov V S, Choi P, Krukovskiy A Y, Novikov V G, Solomyannaya A D, Berezin A V, Vorontsov A S, Markov M B, Parot’kin S V 2011 Extreme Ultraviolet (EUV) Lithography II San Jose, California, United States, April 8, 2011 p796932

    [19]

    Zakharov V S 2017 The International Photonics and Optoelectronics Meeting, Wuhan, China, November 3–5, 2017 pASu4A.1

    [20]

    Sasaki A, Sunahara A, Furukawa H, Nishihara K, Nishikawa T, Koike F 2016 J. Phys. Conf. 688 012099Google Scholar

    [21]

    Wang L J, Qian Z H, Huang X L, Jia S L 2013 IEEE T. Plasma Sci. 41 2015Google Scholar

    [22]

    Vovchenko E D, Melekhov A P V 2016 International Conference of Photonics and Information Optics Moscow, Russia, February 3–5, 2016 p012013

    [23]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [24]

    Sasaki A 2013 High Energ. Dens. Phys. 9 325Google Scholar

    [25]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [26]

    段耀勇, 郭永辉, 邱爱慈 2011 核聚变与等离子体物理 31 2Google Scholar

    Duan Y Y, Guo Y H, Qiu A C 2011 Nucl. Fusion Plasma Phys. 31 2Google Scholar

    [27]

    段耀勇, 郭永辉, 邱爱慈, 吴刚 2010 59 5588Google Scholar

    Duan Y Y, Guo Y H, Qiu A C, Wu G 2010 Acta Phys. Sin. 59 5588Google Scholar

    [28]

    Dunning F B, Hulet R G 1997 Atomic, Molecular, and Optical Physics: Charged Particles (San Diego: Academic Press) p169

    [29]

    韩小英, 李凌霄, 戴振生, 郑无敌, 谷培俊, 吴泽清 2021 70 115202Google Scholar

    Han X Y, Li L X, Dai Z S, Zheng W D, Gu P J, Wu Z Q 2021 Acta Phys. Sin. 70 115202Google Scholar

    [30]

    Vichev I Y, Solomyannaya A D, Grushin A S, Kim D A 2019 High Energ. Dens. Phys. 33 100713Google Scholar

    [31]

    Gu M F 2004 AIP Conf. Proc. 730 127Google Scholar

    [32]

    Han B, Wang F, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Jpn. 67 29Google Scholar

    [33]

    Zeng J L, Gao C, Yuan J M 2010 Phys. Rev. E 82 026409Google Scholar

    [34]

    王均武, 王新兵, 左都罗 2020 激光技术 44 173Google Scholar

    Wang J W, Wang X B, Zuo D L 2020 Laser Technology 44 173Google Scholar

    [35]

    Xie Z, Wu J, Dou Y P, Lin J Q, Tomie T 2019 AIP Adv. 9 085029Google Scholar

    [36]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Chin. Phys. B 30 095207Google Scholar

  • 图 1  激光诱导放电等离子体及其极紫外辐射磁流体模拟流程图

    Figure 1.  Flow chart of radiative magneto-hydrodynamic simulation of LDP and its EUV radiation.

    图 2  电子密度为1020 cm–3时, 不同电子温度条件下锡的离子组分以及平均电离度

    Figure 2.  Charge state distributions, average ionization degrees of tin plasma at different electron temperatures when ne = 1020 cm–3.

    图 3  电子温度为20 eV时, 不同电子密度下锡离子的电离态分布以及平均电离度

    Figure 3.  Charge state distributions, average ionization degrees of tin plasma at different electron densities when Te = 20 eV.

    图 4  激光诱导放电模拟过程中电流波形

    Figure 4.  Simulation of current waveform during laser induced discharge.

    图 5  放电过程中等离子密度模拟 (a) 320 ns; (b) 480 ns; (c) 720 ns; (d) 960 ns; (e) 1200 ns; (f) 1840 ns; (g) 2400 ns; (h) 2700 ns

    Figure 5.  Simulation of plasma density during discharge: (a) 320 ns; (b) 480 ns; (c) 720 ns; (d) 960 ns; (e) 1200 ns; (f) 1840 ns; (g) 2400 ns; (h) 2700 ns.

    图 6  放电过程中极紫外辐射功率密度模拟 (a) 480 ns; (b) 704 ns; (c) 382 ns; (d) 1008 ns; (e) 1152 ns; (f) 1328 ns; (g) 1504 ns; (h) 1712 ns

    Figure 6.  Simulation of EUV radiation power during discharge: (a) 480 ns; (b) 704 ns; (c) 382 ns; (d) 1008 ns; (e) 1152 ns; (f) 1328 ns; (g) 1504 ns; (h) 1712 ns.

    图 7  放电等离子体羽辉图像[34] (a) 300 ns; (b) 450 ns; (c) 600 ns; (d) 750 ns; (e) 900 ns; (f) 1050 ns; (g) 1200 ns; (h) 1350 ns; (i) 1500 ns

    Figure 7.  Discharge plasma plume images[34]: (a) 300 ns; (b) 450 ns; (c) 600 ns; (d) 750 ns; (e) 900 ns; (f) 1050 ns; (g) 1200 ns; (h) 1350 ns; (i) 1500 ns.

    图 8  放电过程中光辐射总功率及极紫外辐射功率时域波形

    Figure 8.  Waveforms of total optical radiation power and EUV power during discharge.

    Baidu
  • [1]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [2]

    Tallents G, Wagenaars E, Pert G 2010 Nat. Photonics 4 809Google Scholar

    [3]

    Schriever G, Semprez O R, Jonkers J, Yoshioka M, Apetz R 2012 J. Microlithogr. Microfabr. Microsyst. 11 021104Google Scholar

    [4]

    Pankert J, Bergmann K, Klein J, Neff W, Rosier O, Seiwert S, Smith C, Probst S, Vaudrevange D, Siemons G, et al. 2004 Emerging Lithographic Technologies VIII Santa Clara, California, May 20, 2004 p152

    [5]

    Sayan S, Chakravorty K, Teramoto Y, Shirai T, Morimoto S, Watanabe H, Sato Y, Aoki K, Liang T, Tezuka Y, et al. 2021 Extreme Ultraviolet (EUV) Lithography XII San Jose, California, United States, March 23, 2021 p116090L

    [6]

    Teramoto Y, Santos B, et al. 2014 Extreme Ultraviolet (EUV) Lithography V San Jose, California, United States, April 17, 2014 p904813

    [7]

    Sayan S, Chakravorty K, Teramoto Y, Santos B, Nagano A, Ashizawa N, Shirai T, Morimoto S, Watanabe H, Aoki K, Sato Y 2023 Optical and EUV Nanolithography XXXVI San Jose, California, United States, May 26, 2023 pPC124940E

    [8]

    Kruecken T 2007 AIP Conf. Proc. 901 181Google Scholar

    [9]

    Hassanein A, Sizyuk V A, Tolkach V I, Morozov V A, Rice B J 2004 J. Micro/Nanolithgr. MEMS MOEMS 3 130Google Scholar

    [10]

    Hassanein A, Sizyuk V, Sizyuk T 2008 Emerging Lithographic Technologies XII, San Jose, California, United States, March 20, 2008 p692113

    [11]

    Zakharov V S, Juschkin L, Zakharov S V, O’Sullivan G, Sokel E, Tobin I 2012 International Workshop on EUV and Soft X-Ray Sources Dublin, Ireland, October 8–11, 2012 pS26

    [12]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Extreme Ultraviolet (EUV) Lithography San Jose, California, United States, March 22, 2010 p76363D

    [13]

    Masnavi M, Nakajima M, Hotta E, Horioka K, Niimi G, Sasaki A 2007 J. Appl. Phys. 101 033306Google Scholar

    [14]

    Tsygvintsev I P, Krukovskiy A Y, Gasilov V A, Novikov V G, Romanov I V, Paperny V L, Rupasov A A 2016 Mathematical Models and Computer Simulations 8 595Google Scholar

    [15]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O’Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O’Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

    [16]

    吴福源, 禇衍运, 叶繁, 李正宏, 杨建伦, Ramis R, 王真, 祁建敏, 周林, 梁川 2017 66 215201Google Scholar

    Wu F Y, Chu Y Y, Ye F, Li Z H, Yang J L, Ramis R, Wang Z, Qi J M, Zhou L, Liang C 2017 Acta Phys. Sin. 66 215201Google Scholar

    [17]

    陈忠旺, 宁成 2017 66 215202Google Scholar

    Cheng Z W, Ning C 2017 Acta Phys. Sin. 66 215202Google Scholar

    [18]

    Zakharov S V, Zakharov V S, Choi P, Krukovskiy A Y, Novikov V G, Solomyannaya A D, Berezin A V, Vorontsov A S, Markov M B, Parot’kin S V 2011 Extreme Ultraviolet (EUV) Lithography II San Jose, California, United States, April 8, 2011 p796932

    [19]

    Zakharov V S 2017 The International Photonics and Optoelectronics Meeting, Wuhan, China, November 3–5, 2017 pASu4A.1

    [20]

    Sasaki A, Sunahara A, Furukawa H, Nishihara K, Nishikawa T, Koike F 2016 J. Phys. Conf. 688 012099Google Scholar

    [21]

    Wang L J, Qian Z H, Huang X L, Jia S L 2013 IEEE T. Plasma Sci. 41 2015Google Scholar

    [22]

    Vovchenko E D, Melekhov A P V 2016 International Conference of Photonics and Information Optics Moscow, Russia, February 3–5, 2016 p012013

    [23]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [24]

    Sasaki A 2013 High Energ. Dens. Phys. 9 325Google Scholar

    [25]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [26]

    段耀勇, 郭永辉, 邱爱慈 2011 核聚变与等离子体物理 31 2Google Scholar

    Duan Y Y, Guo Y H, Qiu A C 2011 Nucl. Fusion Plasma Phys. 31 2Google Scholar

    [27]

    段耀勇, 郭永辉, 邱爱慈, 吴刚 2010 59 5588Google Scholar

    Duan Y Y, Guo Y H, Qiu A C, Wu G 2010 Acta Phys. Sin. 59 5588Google Scholar

    [28]

    Dunning F B, Hulet R G 1997 Atomic, Molecular, and Optical Physics: Charged Particles (San Diego: Academic Press) p169

    [29]

    韩小英, 李凌霄, 戴振生, 郑无敌, 谷培俊, 吴泽清 2021 70 115202Google Scholar

    Han X Y, Li L X, Dai Z S, Zheng W D, Gu P J, Wu Z Q 2021 Acta Phys. Sin. 70 115202Google Scholar

    [30]

    Vichev I Y, Solomyannaya A D, Grushin A S, Kim D A 2019 High Energ. Dens. Phys. 33 100713Google Scholar

    [31]

    Gu M F 2004 AIP Conf. Proc. 730 127Google Scholar

    [32]

    Han B, Wang F, Salzmann D, Zhao G 2015 Publ. Astron. Soc. Jpn. 67 29Google Scholar

    [33]

    Zeng J L, Gao C, Yuan J M 2010 Phys. Rev. E 82 026409Google Scholar

    [34]

    王均武, 王新兵, 左都罗 2020 激光技术 44 173Google Scholar

    Wang J W, Wang X B, Zuo D L 2020 Laser Technology 44 173Google Scholar

    [35]

    Xie Z, Wu J, Dou Y P, Lin J Q, Tomie T 2019 AIP Adv. 9 085029Google Scholar

    [36]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Chin. Phys. B 30 095207Google Scholar

  • [1] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [3] Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan. Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [4] Lei Jian-Ting, Yu Xuan, Shi Guo-Qiang, Yan Shun-Cheng, Sun Shao-Hua, Wang Quan-Jun, Ding Bao-Wei, Ma Xin-Wen, Zhang Shao-Feng, Ding Jing-Jie. Photoionization of Ne and Xe atoms induced by extreme ultraviolet photons. Acta Physica Sinica, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [5] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [6] The characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211450
    [7] Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi. Plasma optical emission spectroscopy based on feedforward neural network. Acta Physica Sinica, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [8] Wang Xing-Sheng, Ma Yan-Ming, Gao Xun, Lin Jing-Quan. Near infrared characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [9] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [10] Dai Yu-Jia, Song Xiao-Wei, Gao Xun, Wang Xing-Sheng, Lin Jing-Quan. Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air. Acta Physica Sinica, 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [11] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] Wu Fu-Yuan, Chu Yan-Yun, Ye Fan, Li Zheng-Hong, Yang Jian-Lun, Rafael Ramis, Wang Zhen, Qi Jian-Min, Zhou Lin, Liang Chuan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI. Acta Physica Sinica, 2017, 66(21): 215201. doi: 10.7498/aps.66.215201
    [13] Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci. Comparisons and analyses of the aluminum K-shell spectroscopic models. Acta Physica Sinica, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [14] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [15] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [16] Meng Li-Min, Teng Ai-Ping, Li Ying-Jun, Cheng Tao, Zhang Jie. Two-dimensional plasma hydrodynamic of X-ray laser based on self-similarity model. Acta Physica Sinica, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [17] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [18] Pang Hai-Long, Li Ying-Jun, Lu Xin, Zhang Jie. Hydrodynamic model of transient Ni-like X-ray lasers driven by Gaussian laser pulse. Acta Physica Sinica, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [19] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [20] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
Metrics
  • Abstract views:  2184
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2023
  • Accepted Date:  15 September 2023
  • Available Online:  15 December 2023
  • Published Online:  05 January 2024

/

返回文章
返回
Baidu
map