Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma

Meng Ju He Zhen-Cen Yan Jun Wu Ze-Qing Yao Ke Li Ji-Guang Wu Yong Wang Jian-Guo

Citation:

Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma

Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo
PDF
HTML
Get Citation
  • The effects of electric-quadrupole (E2) transitions on ion energy-level populations in plasma are studied by constructing the collisional radiative model of a three-level atomic system in the steady-state approximation. It is found that the influence is non-negligible at the low electron density, and becomes larger when the E2 transition rate grows with atomic number increasing. Furthermore, we investigate the E2-transition effects on the populations of levels in the ground configuration for Fe-like Mo16+ and U66+ ions in an electron-beam ion-trap plasma. The level populations are obtained by solving the large-scale rate equation numerically. On this basis, we discuss the influence of the E2 transition on the line intensity ratio of the magnetic dipole (M1) lines. In addition, we point out the significance of the E2 transitions on the intensity ratio of the M1 lines that can be used to diagnose the electron density of plasma.
      Corresponding author: Yao Ke, keyao@fudan.edu.cn ; Li Ji-Guang, li_jiguang@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 11874008, 11734013, 11934004, 11404180, 11604052 and 11774037) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0403200, 2017YFA0402300).
    [1]

    Silwal R, Takacs E, Dreiling J M, Gillaspy J D, Ralchenko Y 2017 Atoms 5 30Google Scholar

    [2]

    Nakamura N, Numadate N, Kono Y, Murakami I, Kato D, Sakaue H A, Hara H 2021 Astrophys. J. 921 115Google Scholar

    [3]

    黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉 1995 44 1783Google Scholar

    Huang W Z, Zhang Q X, He S T, Gu Y Q, You Y L, Jiang W M 1995 Acta Phys. Sin. 44 1783Google Scholar

    [4]

    Feldman U, Doron R, Klapisch M, Bar-Shalom A 2001 Phys. Scr. 63 284Google Scholar

    [5]

    Doron R, Feldman U 2001 Phys. Scr. 64 319Google Scholar

    [6]

    Ralchenko Y 2007 J. Phys. B:At. , Mol. Opt. Phys. 40 F175Google Scholar

    [7]

    Ralchenko Y, Draganic I N, Osin D, Gillaspy J D, Reader J 2011 Phys. Rev. A 83 032517Google Scholar

    [8]

    Ding X B, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2016 Phys. Lett. A 380 874Google Scholar

    [9]

    He Z C, Meng J, Li Y J, Jia F S, Khan N, Niu B, Huang L Y, Hu Z M, Li J G, Wang J G, Zou Y M, Wei B R, Yao K 2022 J. Quant. Spectrosc. Radiat. Transf. 288 108276Google Scholar

    [10]

    Jonauskas V, Masys S, Kyniene A, Gaigalas G 2013 J. Quant. Spectrosc. Radiat. Transf. 127 64Google Scholar

    [11]

    Lu Q, Yan C L, Meng J, Xu G Q, Yang Y, Chen C Y, Xiao J, Li J G, Wang J G, Zou Y 2021 Phys. Rev. A 103 022808Google Scholar

    [12]

    Lu Q, He J, Tian H, Li M, Yang Y, Yao K, Chen C, Xiao J, Li J G, Tu B, Zou Y 2019 Phys. Rev. A 99 042510Google Scholar

    [13]

    Li W, Shi Z, Yang Y, Xiao J, Brage T, Hutton R, Zou Y 2015 Phys. Rev. A 91 062501Google Scholar

    [14]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [16]

    Ding X B, Yang J X, Zhu L F, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2018 Phys. Lett. A 382 2321Google Scholar

    [17]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [18]

    Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K, Zou Y 2021 J. Quant. Spectrosc. Radiat. Transf. 262 107533Google Scholar

    [19]

    Qiu M L, Zhao R F, Guo X L, Zhao Z Z, Li W X, Du S Y, Xiao J, Yao K, Chen C Y, Hutton R, Zou Y 2014 J. Phys. B:At. , Mol. Opt. Phys. 47 175002Google Scholar

    [20]

    Gu M F, Holczer T, Behar E and Kahn S M 2006 Astrophys. J. 641 1227Google Scholar

    [21]

    Lindgren I 1974 J. Phys. B:At. , Mol. Opt. Phys. 7 2441Google Scholar

    [22]

    Kramida A, Ralchenko Y, Reader J, and NIST ASD Team 2021 NIST Atomic Spectra Database (ver. 5.9) [Online]. Available:https://physics.nist.gov/asd [2022, May 19]. National Institute of Standards and Technology, Gaithersburg, MD

    [23]

    Sugar J and Musgrove A 1988 J. Phys. Chem. Ref. Data 17 155Google Scholar

    [24]

    Ralchenko Y, Gillaspy J D, Reader J, Osin D, Curry J J, Podpaly Y A 2013 Phys. Scr. T156

    [25]

    Guo X L, Si R, Li S, Huang M, Hutton R, Wang Y S, Chen C Y, Zou Y M, Wang K, Yan J, Li C Y, Brage T 2016 Phys. Rev. A 93 012513Google Scholar

    [26]

    Ralchenko Y 2013 Plasma Fusion Res. 8 2503024Google Scholar

  • 图 1  三能级原子体系能级图 (a) 模型I不包含E2跃迁; (b) 模型II包含E2跃迁示意图

    Figure 1.  Energy levels of the three-level atomic system: (a) Model I without the E2 transition; (b) Model II with inclusion of the E2 transition.

    图 2  类铁钼(Mo16+)离子(a)和铀(U66+)离子(b)基组态内的禁戒跃迁, 其中实线为M1跃迁, 虚线为E2跃迁, 图中的数字(0, 1, 2, ···)表示能级序号

    Figure 2.  Energy-level diagram of the ground state configuration of Fe-like Mo16+ (a) and Fe-like U66+ (b) ions. Solid lines represent the M1 transitions and dashed lines represent the E2 transitions. The numbers (0, 1, 2, ···) correspond to the energy levels labels.

    图 3  类铁钼离子(a)和铀离子(b)处于基组态3d8能级的离子布居对密度的依赖关系, 图中的数字(0, 1, 2, ···)对应于图1中类铁钼离子和铀离子的能级序号

    Figure 3.  The electron-density dependence of the population distribution of energy levels belonging to 3d8 configuration of Fe-like Mo16+(a) and U66+(b) ions. The numbers (0, 1, 2, ···) correspond to the energy levels of Mo16+ and U66+ of Fig.1.

    图 4  类铁钼离子(a)和铀离子(b)基组态内M1跃迁谱线强度对密度的依赖关系, 图中的(0 –1, ···)是相应跃迁, 数字表示该跃迁的下能级和上能级序号

    Figure 4.  The electron-density dependence of the intensity ratios for the M1 transitions from the ground configuration of Mo16+(a) and U66+(b). The numbers (0 –1, ···) correspond to the lower and upper energy levels of the lines, respectively.

    图 5  类铁钼离子(a)和铀离子(b)的密度敏感线, 图中的数字(9/7, ···)对应于跃迁标号, 与表1一致

    Figure 5.  Density-sensitive line radios for Mo16+(a) and U66+(b). The numbers (9/7, ···) correspond to the transitions in Table 1.

    表 1  类铁钼离子和铀离子的基组态精细能级激发能

    Table 1.  Excitation energies of the lowest excited levels of Fe-like Mo16+, U66+ ions.

    ZConfig-
    uration
    KeyLevelERMBPT/
    eV
    ENIST/
    eV [22, 23]
    423d80$ (3{\rm d}_+^4)_4 $0.0000
    423d81$ ((3{\rm d}_-^3)_{3/2}(3{\rm d}_+^5)_{\rm 5/2})_3 $3.0123.007
    423d82$ (3{\rm d}_{+}^{4})_{2} $3.3583.351
    423d83$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_2 $6.3316.323
    423d84$ (3{\rm d}_+^4)_0 $8.4788.474
    423d85$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_{1} $8.7218.717
    423d86$ (3{\rm d}_{-}^{2})_2 $9.6809.666
    423d87$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_4 $10.18310.219
    423d88$ (3{\rm d}_{-}^2)_0 $21.97221.906
    923d80$ (3{\rm d}_{+}^4)_4$0.000
    923d81$ (3{\rm d}_+^4)_2 $12.183
    923d82$ (3{\rm d}_+^4)_0 $40.048
    923d83$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_3 $188.701
    923d84$((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_2$201.451
    923d85$ ((3{\rm d}_-^3)_3/2(3{\rm d}_+^5)_{5/2})_4 $207.021
    923d86$ ((3{\rm d}_-^3)_{3/2}(3{\rm d}_+^5)_{5/2})_1 $208.894
    923d87$ (3{\rm d_-^2})_2 $386.738
    923d88$ (3{\rm d}_{-}^2)_0 $419.338
    DownLoad: CSV

    表 2  类铁钼离子和铀离子的基组态M1跃迁的跃迁能ΔE、波长λ、跃迁速率A和振子强度gf

    Table 2.  Transition energies ΔE, wavelengths λ, transition rates A and oscillator strength gf for the M1 transitions in the ground configuration of Fe-like Mo16+ and U66+.

    ZLineUpperLowerΔE/eVλ/ nmgfA/s–1
    RMBPTNIST[20,21]
    4218513.393.5694.015.80 × 10–74.42 × 103
    4227010.2121.76121.336.65 × 10–73.33 × 102
    423717.17172.89171.912.86 × 10–770.9
    424616.67185.93186.191.62 × 10–66.26 × 102
    425626.32196.10196.335.21 × 10–91
    426525.36231.18231.054.08 × 10–71.70 × 102
    427633.35370.16370.922.60 × 10–62.53 × 102
    428313.32373.56373.832.40 × 10–62.30 × 102
    429103.01411.66412.376.28 × 10–63.53 × 102
    4210322.97417.04417.191.87 × 10–61.43 × 102
    4211532.39518.72517.871.03 × 10–684.9
    4212650.9591292.391306.472.70 × 10–71
    4213210.3463583.173604.193.93 × 10–70.408
    4214540.2435107.125102.221.42 × 10–70.121
    921713.75 × 1023.313.93 × 10–84.79 × 104
    922862.10 × 1025.897.32 × 10–51.41 × 108
    923502.07 × 1025.991.01 × 10–42.09 × 107
    924731.98 × 1026.262.68 × 10–49.12 × 107
    925611.97 × 1026.306.79 × 10–53.80 × 107
    926411.89 × 1026.551.47 × 10–44.56 × 107
    927301.89 × 1026.573.39 × 10–47.48 × 107
    928741.85 × 1026.699.07 × 10–52.70 × 107
    929761.78 × 1026.978.10 × 10–62.22 × 106
    9210311.77 × 1027.023.01 × 10–55.81 × 106
    9211621.69 × 1027.344.86 × 10–52.00 × 107
    92125318.367.686.64 × 10–61.07 × 104
    92134312.797.247.80 × 10–61.10 × 104
    DownLoad: CSV
    Baidu
  • [1]

    Silwal R, Takacs E, Dreiling J M, Gillaspy J D, Ralchenko Y 2017 Atoms 5 30Google Scholar

    [2]

    Nakamura N, Numadate N, Kono Y, Murakami I, Kato D, Sakaue H A, Hara H 2021 Astrophys. J. 921 115Google Scholar

    [3]

    黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉 1995 44 1783Google Scholar

    Huang W Z, Zhang Q X, He S T, Gu Y Q, You Y L, Jiang W M 1995 Acta Phys. Sin. 44 1783Google Scholar

    [4]

    Feldman U, Doron R, Klapisch M, Bar-Shalom A 2001 Phys. Scr. 63 284Google Scholar

    [5]

    Doron R, Feldman U 2001 Phys. Scr. 64 319Google Scholar

    [6]

    Ralchenko Y 2007 J. Phys. B:At. , Mol. Opt. Phys. 40 F175Google Scholar

    [7]

    Ralchenko Y, Draganic I N, Osin D, Gillaspy J D, Reader J 2011 Phys. Rev. A 83 032517Google Scholar

    [8]

    Ding X B, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2016 Phys. Lett. A 380 874Google Scholar

    [9]

    He Z C, Meng J, Li Y J, Jia F S, Khan N, Niu B, Huang L Y, Hu Z M, Li J G, Wang J G, Zou Y M, Wei B R, Yao K 2022 J. Quant. Spectrosc. Radiat. Transf. 288 108276Google Scholar

    [10]

    Jonauskas V, Masys S, Kyniene A, Gaigalas G 2013 J. Quant. Spectrosc. Radiat. Transf. 127 64Google Scholar

    [11]

    Lu Q, Yan C L, Meng J, Xu G Q, Yang Y, Chen C Y, Xiao J, Li J G, Wang J G, Zou Y 2021 Phys. Rev. A 103 022808Google Scholar

    [12]

    Lu Q, He J, Tian H, Li M, Yang Y, Yao K, Chen C, Xiao J, Li J G, Tu B, Zou Y 2019 Phys. Rev. A 99 042510Google Scholar

    [13]

    Li W, Shi Z, Yang Y, Xiao J, Brage T, Hutton R, Zou Y 2015 Phys. Rev. A 91 062501Google Scholar

    [14]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [16]

    Ding X B, Yang J X, Zhu L F, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2018 Phys. Lett. A 382 2321Google Scholar

    [17]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [18]

    Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K, Zou Y 2021 J. Quant. Spectrosc. Radiat. Transf. 262 107533Google Scholar

    [19]

    Qiu M L, Zhao R F, Guo X L, Zhao Z Z, Li W X, Du S Y, Xiao J, Yao K, Chen C Y, Hutton R, Zou Y 2014 J. Phys. B:At. , Mol. Opt. Phys. 47 175002Google Scholar

    [20]

    Gu M F, Holczer T, Behar E and Kahn S M 2006 Astrophys. J. 641 1227Google Scholar

    [21]

    Lindgren I 1974 J. Phys. B:At. , Mol. Opt. Phys. 7 2441Google Scholar

    [22]

    Kramida A, Ralchenko Y, Reader J, and NIST ASD Team 2021 NIST Atomic Spectra Database (ver. 5.9) [Online]. Available:https://physics.nist.gov/asd [2022, May 19]. National Institute of Standards and Technology, Gaithersburg, MD

    [23]

    Sugar J and Musgrove A 1988 J. Phys. Chem. Ref. Data 17 155Google Scholar

    [24]

    Ralchenko Y, Gillaspy J D, Reader J, Osin D, Curry J J, Podpaly Y A 2013 Phys. Scr. T156

    [25]

    Guo X L, Si R, Li S, Huang M, Hutton R, Wang Y S, Chen C Y, Zou Y M, Wang K, Yan J, Li C Y, Brage T 2016 Phys. Rev. A 93 012513Google Scholar

    [26]

    Ralchenko Y 2013 Plasma Fusion Res. 8 2503024Google Scholar

  • [1] Pei Bo-Yang, Zhuang Ge, Xie Jin-Lin, Zhou Yi-Nan. Absolute calibration method of electron cyclotron emission imaging system on EAST tokamak. Acta Physica Sinica, 2024, 73(13): 135202. doi: 10.7498/aps.73.20240497
    [2] Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov. Simulation of extreme ultraviolet radiation of laser induced discharge plasma. Acta Physica Sinica, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [3] Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming. Tomographic incoherent holography for microscale X-ray source. Acta Physica Sinica, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [4] Zhao Zi-Bo, Zhuang Ge, Xie Jin-Lin, Qu Cheng-Ming, Qiang Zi-Wei. Implementation of spectral clustering algorithm for automatic identification of plasma coherence patterns. Acta Physica Sinica, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [5] Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi. Plasma optical emission spectroscopy based on feedforward neural network. Acta Physica Sinica, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [6] Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci. Comparisons and analyses of the aluminum K-shell spectroscopic models. Acta Physica Sinica, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [7] Wang Chen, An Hong-Hai, Wang Wei, Fang Zhi-Heng, Jia Guo, Meng Xiang-Fu, Sun Jin-Ren, Liu Zheng-Kun, Fu Shao-Jun, Qiao Xiu-Mei, Zheng Wu-Di, Wang Shi-Ji. Diagnoses of Au plasma with soft X-ray double frequency grating interference technique. Acta Physica Sinica, 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [8] Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Wang Wei, Meng Xiang-Fu, Xie Zhi-Yong, Wang Shi-Ji. Diagnosis of high-Z plasma with soft X-ray laser probe. Acta Physica Sinica, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [9] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] Liu Zheng-Kun, Qiu Ke-Qiang, Chen Huo-Yao, Liu Ying, Xu Xiang-Dong, Fu Shao-Jun, Wang Chen, An Hong-Hai, Fang Zhi-Heng. Studies on soft X-ray shearing interferometry with double-frequency gratings. Acta Physica Sinica, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [11] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [12] Shao Xu-Ping, Gong Tian-Lin, Chen Yan, Chen Jing-Xia, Chen Yang-Qin, Yang Xiao-Hua. Spectroscopic diagnosis of the relative ionization depth with different buffer gases. Acta Physica Sinica, 2010, 59(3): 1677-1680. doi: 10.7498/aps.59.1677
    [13] Ran Lin-Song, Wang Hong-Bin, Li Xiang-Dong, Zhang Ji-Yan, Cheng Xin-Lu. Spectral line shift of He-like titanium in hot and dense plasmas. Acta Physica Sinica, 2009, 58(9): 6096-6100. doi: 10.7498/aps.58.6096
    [14] Wang Chen, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Ye Jun-Jian, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Zhen Wu-Di, Ye Wen-Hua, Qiao Xiu-Mei, Zhang Guo-Ping. Experimental diagnosis of plasma jets by using an X-ray laser. Acta Physica Sinica, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [15] Zhao Tai-Ze, Wang Fei, Guo Shao-Feng, Guo Wen-Kang, Xu Ping. Rapid enthalpy probe. Acta Physica Sinica, 2007, 56(10): 5952-5957. doi: 10.7498/aps.56.5952
    [16] Gong Tian-Lin, Yang Xiao-Hua, Li Hong-Bing, Han Liang-Kai, Chen Yang-Qin. Dependence of the molecular ionic spectral intensity on the pressure of mother molecules. Acta Physica Sinica, 2004, 53(2): 418-422. doi: 10.7498/aps.53.418
    [17] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [18] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [19] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [20] YU JIAN-HUA, HUANG JIAN-JUN. PLASMA DIAGNOSIS OF RF DISCHARGE BY USING IMPEDANCE MEASUREMENT. Acta Physica Sinica, 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
Metrics
  • Abstract views:  4771
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2022
  • Accepted Date:  24 May 2022
  • Available Online:  12 October 2022
  • Published Online:  05 October 2022

/

返回文章
返回
Baidu
map