搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲激光诱导空气等离子体的近红外辐射特性

王兴生 马彦明 高勋 林景全

引用本文:
Citation:

纳秒脉冲激光诱导空气等离子体的近红外辐射特性

王兴生, 马彦明, 高勋, 林景全

Near infrared characteristics of air plasma induced by nanosecond laser

Wang Xing-Sheng, Ma Yan-Ming, Gao Xun, Lin Jing-Quan
PDF
HTML
导出引用
  • 开展纳秒激光诱导空气等离子体近红外辐射特性的实验研究, 对波长为532 nm的脉冲ns激光诱导产生的空气等离子体的近红外光谱进行测量. 结果表明: 空气等离子体的近红外辐射在光谱范围为1100—2400 nm内由连续谱和线状谱组成, 光谱指认表明线谱主要来源于N, O原子的中性原子谱和氮分子的振动光谱. 通过对连续谱的分析得知, 黑体辐射是连续辐射的主要来源. 空气中波长1128 nm附近的辐射, 可能是N和O中性原子谱的贡献. 保持真空腔内气压不变, 改变腔内氮气和氧气气体组分含量, 分析测得的红外光谱数据, 可知混合气体中氧气和氮气含量变化只对波长为1128 nm附近的辐射有影响. 利用二元线性回归分析对数据进行分析后得知, 氧气对波长为1128 nm附近的辐射贡献较大. 最后从电离难易的角度分析造成这一结果的原因.
    The near infrared emission from laser induced air plasma has been investigated in a range of 1100–2400 nm. The infrared spectra of air plasma consist of linear spectral and continuum radiation. Most of the spectral features observed are identified, including atomic lines of O I and N I and molecular bands of N2. The spectra show trace of blackbody background emission and the plasma temperature is estimated from Planck law. We find that the continuum radiation is mainly origins mainly from the blackbody emission of plasma. There is a limitation of plasma temperature estimation by using Boltzmann method. For example, the local thermodynamic equilibrium must be satisfied, and the trend of change in plasma temperature can be estimated within a few microseconds after the laser shot. In this paper, the plasma temperature in 15 μs after laser irradiation is estimated from the Planck law, and the temperature of air plasma is estimated to be about 3900 K, which can compensate for the shortcomings of Boltzmann method. It is found that the neutral atomic spectra of N and O both may contribute to the radiation of the air plasma at 1128 nm. Then we keep the air pressure in the vacuum chamber at 80 kPa, and change the nitrogen and oxygen content in the chamber. The infrared spectrum data show that the oxygen content in the mixed gas only affect the radiation of 1128 nm wavelength. The binary linear regression analysis shows that oxygen contributes much to the radiation of 1128 nm wavelength. This can be explained by the difference in ionization potential between molecule O2 and N2. The infrared radiation intensities of the air plasma at 1128 nm under 20−80 kPa are obtained, and they are compared with the calculated results obtained with the fitting formula. The predicted value is very close to the experimental value and the relative error is negligibly at the pressure of 30−80 kPa. The study of the characteristics of infrared emission from laser induced plasma is of great significance for understanding and using the physical mechanisms of laser-matter interaction.
      通信作者: 高勋, lasercust@163.com ; 林景全, linjingquan@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575030)、吉林省自然科学基金(批准号: 20180101283JC)、吉林省教育厅项目(批准号: JJKH20190539KJ)和长春理工大学创新基金(批准号: XJJLG-2017-10)资助的课题
      Corresponding author: Gao Xun, lasercust@163.com ; Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575030), the Natural Science Foundation of Jilin, China (Grant No. 20180101283JC), the Department of Education of Jilin, China (Grant No. JJKH20190539KJ), and Funds from Changchun University of Science and Technology, China (Grant No. XJJLG-2017-10)
    [1]

    Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531Google Scholar

    [2]

    Knudtson J T, Green W B, Sutton D G 1987 J. Appl. Phys. 61 4771Google Scholar

    [3]

    Civis S, Ferus M, Kubelík P, Jelinek P, Chernov V E 2012 Astron. Astrophys. 541 A125Google Scholar

    [4]

    Zhong H, Karpowicz N, Zhang X C 2006 Appl. Phys. Lett. 88 261103Google Scholar

    [5]

    Aspiotis J A, Barbieri N, Bernath R, Brown C G, Richardson M, Cooper B Y 2006 Proc. SPIE-Int. Soc. Opt. Eng. 6219 621908

    [6]

    Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A 2010 Appl. Phys. Lett. 96 141111Google Scholar

    [7]

    Wu B, Kumar A 2007 J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25 1743Google Scholar

    [8]

    Rusak D A, Castle B C, Smith B W, Winefordner J D 1997 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [9]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Chen L, Li X, Gao J Y 2008 High Power Laser Part. Beams 20 1603

    [10]

    Thomson M D, Kreß M, Loffler T, Roskos H G 2007 Laser Photonics Rev. 1 349Google Scholar

    [11]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote Sens. Lett. 6 718Google Scholar

    [12]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [13]

    Brackett F S 1922 Astrophys. J. 56 154Google Scholar

    [14]

    Pfund A H 1924 J. Opt. Soc. Am. Rev. Sci. Instrum. 9 193Google Scholar

    [15]

    Steffey W W 1926 IEEE Aerosp. Electron. Syst. Mag. 21 55

    [16]

    Meggers W F, De- Bruin T L, Humphreys C J 1929 Science 69 406

    [17]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 1419Google Scholar

    [18]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 195Google Scholar

    [19]

    Tanaka H, Akinaga K, Takahashi A, Okada T 2004 Appl. Phys. A 79 1493Google Scholar

    [20]

    Adamson A W, Cimolino M C 1984 J. Phys. Chem. B 88 488Google Scholar

    [21]

    El-RabiiH, Victorov S B, Yalin A P 2009 J. Phys. D: Appl. Phys. 42 075203Google Scholar

    [22]

    Harilal S S, Skrodzki P J, Miloshevsky A, Brumfield B E, Phillips M C, Miloshevsky G 2017 Phys. Plasmas 24 063304Google Scholar

    [23]

    Radziemski L J, Cremers D A, Bostian M, Chinni R C, Navarro-northrup C 2007 Appl. Spectrosc. 61 1141Google Scholar

    [24]

    Lofthus A, Krupenie P H 2009 J. Phys. Chem. Ref. Data 6 113

    [25]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308318

    [26]

    Shneider M N, Zheltikovs A M, Miles R B 2011 Phys. Plasmas. 18 063509Google Scholar

  • 图 1  纳秒激光诱导空气等离子体近红外辐射实验装置

    Fig. 1.  Experiment setup for the near infrared emissions from ns laser-induced air plasma.

    图 2  不同能量下激光诱导空气等离子体在激光作用15 μs后测到的红外辐射光谱

    Fig. 2.  IR emissions of laser-induced air plasma varied with laser energy after 15 μs delay time.

    图 3  80 kPa气压下激光诱导空气和氮气等离子体红外辐射光谱

    Fig. 3.  IR emissions of laser-induced air and N2 plasma under 80 kPa.

    图 4  O2和N2气体不同压强比的激光诱导等离子体红外辐射光谱

    Fig. 4.  IR emissions of laser-induced plasma of mixed gas with different pressure.

    图 5  二元线性回归分析结果

    Fig. 5.  The fitting result of binary linear regression analysis.

    表 1  氮原子和氧原子的红外光谱指认

    Table 1.  Identification of the observed emission lines of NI and OI

    Speciesλ/nmAki/s–1Lower stateUpper state
    Term symbolJTerm symbolJ
    O I1128.63172.32 × 1072s22p3(4S0)3p 3P12s22p3(4S0)3d 32
    O I1128.64061.29 × 1072s22p3(4S0)3p 3P12s22p3(4S0)3d 31
    O I1128.69143.09 × 1072s22p3(4S0)3p 3P22s22p3(4S0)3d 33
    O I1128.70297.74 × 1062s22p3(4S0)3p 3P22s22p3(4S0)3d 32
    O I1128.73181.72 × 1072s22p3(4S0)3p 3P02s22p3(4S0)3d 31
    O I1129.51035.34 × 1062s22p3(4S0)3p 5P12s22p3(4S0)4s 52
    O I1129.76828.90 × 1062s22p3(4S0)3p 5P22s22p3(4S0)4s 52
    O I1130.23781.25 × 1072s22p3(4S0)3p 5P32s22p3(4S0)3d 52
    N I1129.1671.20 × 1072s22p2(3P)3p 47/22s22p2(3P)4s 4P5/2
    N I1131.3891.00 × 1072s22p2(3P)3p 45/22s22p2(3P)4s 4P3/2
    N I1132.3188.19 × 1062s22p2(3P)3p 43/22s22p2(3P)4s 4P1/2
    N I1246.12531.82 × 1072s22p2(3P)3p 23/22s22p2(3P)3d 2F5/2
    N I1246.96152.18 × 1072s22p2(3P)3p 25/22s22p2(3P)3d 2F7/2
    N I1358.13235.76 × 1062s22p2(3P)3 s 2P3/22s22p2(3P)3p 21/2
    N I1358.77106.31 × 1062s22p2(3P)3p 25/22s22p2(3P)4s 2P3/2
    N I1360.2271.07 × 1072s22p2(3P)3p 21/22s22p2(3P)3d 2D3/2
    N I1362.4181.33 × 1072s22p2(3P)3p 23/22s22p2(3P)3d 2D5/2
    N I1475.70731.06 × 1062s22p4 4P5/22s22p2(3P)3p 47/2
    N I1558.22876.5 × 1062s22p2(3P)3p 23/22s22p2(3P)4s 2P3/2
    下载: 导出CSV

    表 2  波长1128 nm红外光谱强度拟合公式预测值与实验值对比

    Table 2.  Comparison between predicted value and experimental value of the intensity of 1128 nm.

    气体气压/kPa预测值实验值相对误差/%
    Air801698421669031.76
    701486121531362.95
    601273821403179.21
    501061511176739.79
    4084921885164.06
    30636915657512.56
    20424602796451.80
    下载: 导出CSV
    Baidu
  • [1]

    Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531Google Scholar

    [2]

    Knudtson J T, Green W B, Sutton D G 1987 J. Appl. Phys. 61 4771Google Scholar

    [3]

    Civis S, Ferus M, Kubelík P, Jelinek P, Chernov V E 2012 Astron. Astrophys. 541 A125Google Scholar

    [4]

    Zhong H, Karpowicz N, Zhang X C 2006 Appl. Phys. Lett. 88 261103Google Scholar

    [5]

    Aspiotis J A, Barbieri N, Bernath R, Brown C G, Richardson M, Cooper B Y 2006 Proc. SPIE-Int. Soc. Opt. Eng. 6219 621908

    [6]

    Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A 2010 Appl. Phys. Lett. 96 141111Google Scholar

    [7]

    Wu B, Kumar A 2007 J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25 1743Google Scholar

    [8]

    Rusak D A, Castle B C, Smith B W, Winefordner J D 1997 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [9]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Chen L, Li X, Gao J Y 2008 High Power Laser Part. Beams 20 1603

    [10]

    Thomson M D, Kreß M, Loffler T, Roskos H G 2007 Laser Photonics Rev. 1 349Google Scholar

    [11]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote Sens. Lett. 6 718Google Scholar

    [12]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [13]

    Brackett F S 1922 Astrophys. J. 56 154Google Scholar

    [14]

    Pfund A H 1924 J. Opt. Soc. Am. Rev. Sci. Instrum. 9 193Google Scholar

    [15]

    Steffey W W 1926 IEEE Aerosp. Electron. Syst. Mag. 21 55

    [16]

    Meggers W F, De- Bruin T L, Humphreys C J 1929 Science 69 406

    [17]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 1419Google Scholar

    [18]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 195Google Scholar

    [19]

    Tanaka H, Akinaga K, Takahashi A, Okada T 2004 Appl. Phys. A 79 1493Google Scholar

    [20]

    Adamson A W, Cimolino M C 1984 J. Phys. Chem. B 88 488Google Scholar

    [21]

    El-RabiiH, Victorov S B, Yalin A P 2009 J. Phys. D: Appl. Phys. 42 075203Google Scholar

    [22]

    Harilal S S, Skrodzki P J, Miloshevsky A, Brumfield B E, Phillips M C, Miloshevsky G 2017 Phys. Plasmas 24 063304Google Scholar

    [23]

    Radziemski L J, Cremers D A, Bostian M, Chinni R C, Navarro-northrup C 2007 Appl. Spectrosc. 61 1141Google Scholar

    [24]

    Lofthus A, Krupenie P H 2009 J. Phys. Chem. Ref. Data 6 113

    [25]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308318

    [26]

    Shneider M N, Zheltikovs A M, Miles R B 2011 Phys. Plasmas. 18 063509Google Scholar

  • [1] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射.  , 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [2] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用.  , 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究.  , 2021, (): . doi: 10.7498/aps.70.20211450
    [5] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响.  , 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [6] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究.  , 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [7] 戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全. 纳秒激光诱导空气等离子体射频辐射特性研究.  , 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [8] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真.  , 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [9] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究.  , 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究.  , 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [12] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [13] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析.  , 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [14] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件.  , 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [15] 郝作强, 张 杰, 俞 进, 张 喆, 仲佳勇, 臧充之, 金 展, 王兆华, 魏志义. 空气中激光等离子体通道的荧光探测和声学诊断两种方法的比较实验研究.  , 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [16] 张 喆, 张 杰, 李玉同, 郝作强, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道导电性能的研究.  , 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [17] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究.  , 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [18] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究.  , 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [19] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子.  , 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] 卞保民, 陈建平, 杨玲, 倪晓武, 陆建. 空气中激光等离子体冲击波的传输特性研究.  , 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
计量
  • 文章访问数:  9645
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-18
  • 修回日期:  2019-11-05
  • 刊出日期:  2020-01-20

/

返回文章
返回
Baidu
map