Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser

Xie Zhuo Wen Zhi-Lin Si Ming-Qi Dou Yin-Ping Song Xiao-Wei Lin Jing-Quan

Citation:

Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser

Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan
PDF
HTML
Get Citation
  • The extreme ultraviolet (EUV) lithography technology, which is required for high-end chip manufacturing, is the first of 35 “neck stuck” key core technologies that China is facing currently. The EUV source with high conversion efficiency is an important part of EUV lithography system. The experiment on dual-pulse irradiated Gd target is carried out to realize the stronger 6.7 nm EUV emission output. Firstly, we compute the contribution of transition arrays of the form 4p-4d and 4d-4f from their open 4d subshell in charge states Gd18+−Gd27+, and transition arrays of the form 4d-4f from their open 4d subshell in charge states Gd14+−Gd17+ on the near 6.7 nm EUV source. Subsequently, the experimental results of the dual pulse laser irradiated Gd target show that the intensity of 6.7 nm peak EUV emission decreases first, then increases and drops again due to the plasma density decreasing gradually when the delay time between the pre-pulse and main-pulse increases from 0−500 ns. The strongest intensity of 6.7 nm peak EUV emission is generated when the delay time is 100 ns. At the same time, the spectrum efficiency is higher when the delay time is 100 ns, which is 33% higher than that of single pulse laser. In addition, the experimental results show that the half width of EUV spectrum produced by dual pulse in the delay between 10−500 ns is narrower than that of signal laser pulse due to the fact that the method of dual pulse can suppress the self-absorption effect. The half width is the narrowest when the delay is 30 ns, which is about 1/3 time of EUV spectrum width generated by a single pulse. At the same time, the narrowing of Gd EUV spectrum improves the spectral utilization efficiency near 6.7 nm wavelength (within 0.6% bandwidth).
      Corresponding author: Dou Yin-Ping, douzi714@126.com ; Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 62005021, 62105040), the National Natural Science Foundation of China (Grant No. 62175018), the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0735), the Key R&D Program of Scientific and Technological Development Plan of Jilin Province, China (Grant No. 20200401052GX), the Department of Education of Jilin Province, China (Grant No. JJKH20210799KJ), and the Key Laboratory of Ultrafast and Extreme Ultraviolet Optics of Jilin Province, China (Grant No. YDZJ202102CXJD028).
    [1]

    Schmitz C, Wilson D, Rudolf D, Wiemann C, Plucinski L, Riess S, Schuck M, Hardtdegen H, Schneider C M, Tautz F S, Juschkin L 2016 Appl. Phys. Lett. 108 234101Google Scholar

    [2]

    Barkusky F, Bayer A, Döring S, Flöter B, Großmann P, Peth Cn, Reese M, Mann K 2010 The International Society for Optical Engineering. Prague, Czech Republic April 20, 2009 p7361

    [3]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [4]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 1

    [5]

    Torretti F, Liu F, Bayraktar M, Scheers J, Bouza Z, Ubachs W, Hoekstra R, Versolato O O 2019 J. Phys. D: Appl. Phys. 53 055204Google Scholar

    [6]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [7]

    Huang Q S, Medvedev V, Kruijs R V D, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Rev. 4 011104Google Scholar

    [8]

    Wu B Q, Kumar A 2007 J. Vac. Sci. Technol., B 25 1743Google Scholar

    [9]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Appl. Phys. Lett. 97 231501Google Scholar

    [10]

    Wezyk A V, Andrianov K, Wilhein T, Bergmann K 2019 J. Phys. D: Appl. Phys. 52 505202Google Scholar

    [11]

    Chkhalo N I, Künstner S, Polkovnikov V N, Salashchenko N N, Schäfers F, Starikov S D 2013 Appl. Phys. Lett. 102 011602Google Scholar

    [12]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Eshima Takeo, Ohashi H, Nishikino M, Scally E, Nshimura H, Azechi H, O'Sullivan G 2016 J. Phys. Conf. Ser. 688 012046Google Scholar

    [13]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Ohashi H, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Ejima T, Nishikino M, Sunahara A, Scally E, Li B W, Yanagida T, Nishimura H, Azechi H, O'Sullivan G 2014 Appl. Phys. Express. 7 086202Google Scholar

    [14]

    Cummins T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 061118Google Scholar

    [15]

    Yin L, Wang H C, Reagan B A, Baumgarten C, Gullikson E, Berrill M, Shlyaptsev V N, Rocca J J 2016 Phys. Rev. Appl. 6 034009Google Scholar

    [16]

    Xu Q, Tian H, Zhao Y, Wang Q 2019 Symmetry 11 658Google Scholar

    [17]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Opt. Laser Technol. 138 106904Google Scholar

    [18]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y Z, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [19]

    Higashiguchi T, Li B W, Suzuki Y, Kawasaki M, Ohashi H, Torii S, Nakamura D, Takahashi A, Okada T, Jiang W H, Miura T, Endo A, Dunne P, O'Sullivan G, Makimura T 2013 Opt. Express 21 031837Google Scholar

    [20]

    Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, Kilbane D, Dunne P, O'Sullivan G 2011 Appl. Phys. Lett. 99 191502Google Scholar

    [21]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [22]

    Higashiguchi T, Dojyo N, Hamada M, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 201503Google Scholar

    [23]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [24]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202Google Scholar

    [25]

    Kilbane D, O'Sullivan G 2010 J. Appl. Phys. 108 104905Google Scholar

    [26]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (University of California Press) pp619–625

    [27]

    Aota T, Tomie T 2005 Phys. Rev. Lett. 94 015004Google Scholar

    [28]

    Hassanein A, Sizyuk T, Sizyuk V, Harilal S S 2011 J. Micro/Nanolithgr. MEMS MOEMS 10 033002Google Scholar

    [29]

    Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar

    [30]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303Google Scholar

    [31]

    Li B W, Dunne P, Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, O'Sullivan G 2011 Appl. Phys. Lett. 99 231502Google Scholar

    [32]

    National Institute of Standards and Technology https://nlte.nist.gov/FLY/ [2018-8]

    [33]

    Higashiguchi T, Yamaguchi M, Otsuka T, Nagata T, Ohashi H, Li B W, D'Arcy R, Dunne P, O'Sullivan G 2014 Rev. Sci. Instrum. 85 096102Google Scholar

    [34]

    Favre A, Morel V, Bultel A, Godard G, Idlahcen S, Benyagoub A, Monnet I, Semerokc A, Dinescu Maria, Markelj S, Magaud P, Grisolia C 2021 Fusion. Eng. Des. 168 112364Google Scholar

    [35]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O'Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O'Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

  • 图 1  双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射实验装置图

    Figure 1.  Experimental setup for the characteristics of EUV emission from Gd plasma produced by dual laser.

    图 2  Gd靶激光等离子体极紫外光辐射实验曲线(黑色)和理论计算Gd不同离子价态自发辐射速率与波长之间的关系(红色). 图中的14+—27+表示Gd离子阶数. Gd18+—Gd27+离子的跃迁类型为Δn = 0, n = 4, 4p64dm-4p54dm+1 + 4dm–14f (m = 1—10), Gd14+—Gd17+离子的跃迁类型为Δn = 0, n = 4, 4d104fm-4d94fm+1 (m = 1—4)和Δn = 1, n = 4, n = 5, 4d104f-4d94fm–15d + 4d94fm–15g (m = 1—4)

    Figure 2.  Experimental waveform of laser produced Gd plasma EUV emission (black line), and the transition probabilities of Gd14+−Gd27+ computed with the Cowan code including the effects of CI (red line). The transition type of Gd18+− Gd27+ is Δn = 0, n = 4, 4p64dm-4p54dm+1 + 4dm–14f (m = 1−10). And the transition type of Gd14+− Gd17+ is Δn = 0, n = 4, 4d104fm-4d94fm+1 (m = 1−4), and Δn = 1, n = 4, n = 5, 4d104f-4d94fm–15d + 4d94fm–15g (m = 1−4).

    图 3  不同延时下, (a) 6.7 nm极紫外光辐射曲线以及(b) 6.7 nm峰值附近处辐射强度. 主脉冲激光功率为2 × 1012 W/cm2、预脉冲激光功率为2.2 × 1010 W/cm2

    Figure 3.  (a) The impendence of 6.7 nm EUV spectrum radiation and (b) the radiation intensity of the 6.7 nm peak on the different delay time with the main pulse laser density of 2 × 1012 W/cm2 and pre-pulse laser density of 2.2 × 1010 W/cm2.

    图 4  延时为30, 100 ns和主脉冲三种情况下的极紫外光谱宽度对比图

    Figure 4.  Comparisons of EUV spectral widths under the delay of 30, 100 ns and main pulse.

    图 5  在电子密度为1019 (a)和1020 cm–3 (b)条件下, 离子丰度与电子温度之间的关系, 图中的14+—25+表示Gd 离子阶数

    Figure 5.  Ionic populations of Gd plasma as a function of Te under the electron density of 1019 (a) and 1020 cm–3 (b). The numbers in the figure are represented the ion stages of Gd plasma.

    图 6  固定电子温度为100 eV条件下, Gd18+离子丰度与电子密度之间的关系

    Figure 6.  The Gd18+ ion population dependence of electron density under the electron temperature of 100 eV.

    图 7  不同延时下, 波长6.7 nm左右的0.6%带内的光谱效率

    Figure 7.  Spectral efficiency of the 0.6% in band radiation around 6.7 nm to the total radiation between 5−10 nm under the main pulse and dual pulse with different delay time.

    Baidu
  • [1]

    Schmitz C, Wilson D, Rudolf D, Wiemann C, Plucinski L, Riess S, Schuck M, Hardtdegen H, Schneider C M, Tautz F S, Juschkin L 2016 Appl. Phys. Lett. 108 234101Google Scholar

    [2]

    Barkusky F, Bayer A, Döring S, Flöter B, Großmann P, Peth Cn, Reese M, Mann K 2010 The International Society for Optical Engineering. Prague, Czech Republic April 20, 2009 p7361

    [3]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [4]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 1

    [5]

    Torretti F, Liu F, Bayraktar M, Scheers J, Bouza Z, Ubachs W, Hoekstra R, Versolato O O 2019 J. Phys. D: Appl. Phys. 53 055204Google Scholar

    [6]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [7]

    Huang Q S, Medvedev V, Kruijs R V D, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Rev. 4 011104Google Scholar

    [8]

    Wu B Q, Kumar A 2007 J. Vac. Sci. Technol., B 25 1743Google Scholar

    [9]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Appl. Phys. Lett. 97 231501Google Scholar

    [10]

    Wezyk A V, Andrianov K, Wilhein T, Bergmann K 2019 J. Phys. D: Appl. Phys. 52 505202Google Scholar

    [11]

    Chkhalo N I, Künstner S, Polkovnikov V N, Salashchenko N N, Schäfers F, Starikov S D 2013 Appl. Phys. Lett. 102 011602Google Scholar

    [12]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Eshima Takeo, Ohashi H, Nishikino M, Scally E, Nshimura H, Azechi H, O'Sullivan G 2016 J. Phys. Conf. Ser. 688 012046Google Scholar

    [13]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Ohashi H, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Ejima T, Nishikino M, Sunahara A, Scally E, Li B W, Yanagida T, Nishimura H, Azechi H, O'Sullivan G 2014 Appl. Phys. Express. 7 086202Google Scholar

    [14]

    Cummins T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 061118Google Scholar

    [15]

    Yin L, Wang H C, Reagan B A, Baumgarten C, Gullikson E, Berrill M, Shlyaptsev V N, Rocca J J 2016 Phys. Rev. Appl. 6 034009Google Scholar

    [16]

    Xu Q, Tian H, Zhao Y, Wang Q 2019 Symmetry 11 658Google Scholar

    [17]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Opt. Laser Technol. 138 106904Google Scholar

    [18]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y Z, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [19]

    Higashiguchi T, Li B W, Suzuki Y, Kawasaki M, Ohashi H, Torii S, Nakamura D, Takahashi A, Okada T, Jiang W H, Miura T, Endo A, Dunne P, O'Sullivan G, Makimura T 2013 Opt. Express 21 031837Google Scholar

    [20]

    Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, Kilbane D, Dunne P, O'Sullivan G 2011 Appl. Phys. Lett. 99 191502Google Scholar

    [21]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [22]

    Higashiguchi T, Dojyo N, Hamada M, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 201503Google Scholar

    [23]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [24]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202Google Scholar

    [25]

    Kilbane D, O'Sullivan G 2010 J. Appl. Phys. 108 104905Google Scholar

    [26]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (University of California Press) pp619–625

    [27]

    Aota T, Tomie T 2005 Phys. Rev. Lett. 94 015004Google Scholar

    [28]

    Hassanein A, Sizyuk T, Sizyuk V, Harilal S S 2011 J. Micro/Nanolithgr. MEMS MOEMS 10 033002Google Scholar

    [29]

    Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar

    [30]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303Google Scholar

    [31]

    Li B W, Dunne P, Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, O'Sullivan G 2011 Appl. Phys. Lett. 99 231502Google Scholar

    [32]

    National Institute of Standards and Technology https://nlte.nist.gov/FLY/ [2018-8]

    [33]

    Higashiguchi T, Yamaguchi M, Otsuka T, Nagata T, Ohashi H, Li B W, D'Arcy R, Dunne P, O'Sullivan G 2014 Rev. Sci. Instrum. 85 096102Google Scholar

    [34]

    Favre A, Morel V, Bultel A, Godard G, Idlahcen S, Benyagoub A, Monnet I, Semerokc A, Dinescu Maria, Markelj S, Magaud P, Grisolia C 2021 Fusion. Eng. Des. 168 112364Google Scholar

    [35]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O'Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O'Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

  • [1] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] Li Hui, Tan Fang-Rui, Yin Hao-Yu, Ma Yue-Yang, Wu Xiao-Bin. Simulation study of decoherence and light intensity uniformization for extreme ultraviolet of uniform light pipe. Acta Physica Sinica, 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [3] Gao Cheng, Liu Yan-Peng, Yan Guan-Peng, Yan Jie, Chen Xiao-Qi, Hou Yong, Jin Feng-Tao, Wu Jian-Hua, Zeng Jiao-Long, Yuan Jian-Min. Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium. Acta Physica Sinica, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [4] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [5] Zhang Wen-Min, Zhang Ling, Cheng Yun-Xin, Wang Zheng-Xiong, Hu Ai-Lan, Duan Yan-Min, Zhou Tian-Fu, Liu Hai-Qing. Line identification of extreme ultraviolet spectra of Mo V to Mo XVIII in EAST tokamak. Acta Physica Sinica, 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [6] The characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211450
    [7] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [8] Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field. Acta Physica Sinica, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [9] Chen Hong, Lan Hui, Chen Zi-Qi, Liu Lu-Ning, Wu Tao, Zuo Du-Luo, Lu Pei-Xiang, Wang Xin-Bing. Experimental study on laser produced tin droplet plasma extreme ultraviolet light source. Acta Physica Sinica, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [10] Dou Yin-Ping, Xie Zhuo, Song Xiao-Lin, Tian Yong, Lin Jing-Quan. Experimental research on laser-produced Gd target plasma source for 6.7 nm lithography. Acta Physica Sinica, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [11] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] Liu Yuan-Xing, Liu Shi-Bing, Song Hai-Ying, He Run. Time-resolved spectrum characteristics of instantaneous plasma generation and evolution processes in nanosecond laser-Cu-target. Acta Physica Sinica, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [13] Gu Li-Shan, Wang Dong-Sheng, Peng Yong-Gang, Zheng Yu-Ju. Statistics property of polarized photon emission driven bya pair of pulses in single quantum dot. Acta Physica Sinica, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [14] Liu Shuo, Chen Gao, Chen Ji-Gen, Zhu Qi-Ren. Increasing line-density of high-order harmonic generation spectra with bichromatic fields. Acta Physica Sinica, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [15] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [16] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [17] Zheng Zhi-Yuan, Lu Xin, Zhang Jie, Hao Zuo-Qiang, Yuan Xiao-Hui, Wang Zhao-Hua. Experimental study on the momentum coupling efficiency of laser plasma. Acta Physica Sinica, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [18] HUANG WEN-ZHONG, HE SHAO-TANG, KONG LING-HUA, HAN HONG-JUN, FANG QUAN-YU, CHEN GUO-XING. XUV SPECTRUM IN LASER-PRODUCED Ge PLASMA. Acta Physica Sinica, 1994, 43(7): 1066-1071. doi: 10.7498/aps.43.1066
    [19] WANG WEN-SHU, LI ZAN-LIANG, HUANG MAO. VACUUM ULTRAVIOLET SPECTRA OF CT-6B TOKAMAK PLASMA. Acta Physica Sinica, 1987, 36(6): 712-716. doi: 10.7498/aps.36.712
    [20] WANG YONG-CHANG, E. JANNITTI, G. TONDELLO. SPECTROSCOPIC OBSERVATIONS ON THE LINE STARK BROADENING IN THE VACUUM ULTRAVIOLET IN LASER-PRODUCED PLASMAS. Acta Physica Sinica, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
Metrics
  • Abstract views:  5064
  • PDF Downloads:  148
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2021
  • Accepted Date:  16 September 2021
  • Available Online:  21 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回
Baidu
map