搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlK壳层等离子体辐射谱模型的比对

吴坚 李兴文 李沫 杨泽锋 史宗谦 贾申利 邱爱慈

引用本文:
Citation:

AlK壳层等离子体辐射谱模型的比对

吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈

Comparisons and analyses of the aluminum K-shell spectroscopic models

Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci
PDF
导出引用
  • 碰撞辐射模型的比对研究对校验发展等离子体辐射谱模型、提高等离子体参数的诊断精度具有重要意义. 基于Al等离子体, 对常用的辐射模型代码FAC和FLYCHK K壳层辐射谱模型开展了比对研究, 详细比较了它们的离子丰度、特征线强度、谱发射率曲线和吸收系数曲线等特征, 并根据各能态的速率方程, 从FAC和FLYCHK模型的结构特点出发, 分析了造成这些差异的原因. FAC 和FLYCHK计算得到的类H、类He离子n=2, n=3激发态数密度有显著差异, 进而引起特征线发射率及其比值(He-IC/He-αup, He-βup/H-βup)的差异, 从而对等离子体参数的诊断结果产生影响. 除了模型中采用的能级结构和碰撞辐射过程速率外, 计算结果显著地受到FAC 和FLYCHK 模型结构的影响. n=2激发态数密度的差异是由FAC和FLYCHK分别采用能级和超组态(组态)的方式构建n=2激发态的速率方程而引起的, 而FAC代码忽略了n=3与更高激发态之间的碰撞耦合过程, 是引起n=3激发态数密度差异的原因. 主要特征线的吸收系数与基态能级的数密度相关, 受到激发态数密度的影响较小, 因此与谱发射率曲线相比, FAC和FLYCHK计算结果的差异更小.
    Comparing different collisional-radiative models is of great importance for validating the models for plasma spectroscopy and improving the diagnostic accuracy of plasma parameters. In this paper, the widely applied K-shell spectroscopic models, FAC and FLYCHK, are compared based on their calculation results of the aluminum K-shell emissivity and absorption coefficient. The state abundances, K-shell line ratios, K-shell emissivities and absorption coefficients in a wide range of plasma temperatures and densities are calculated and compared, and the reasons for the differences between these two models are discussed. In an electron temperature range from 200 to 800 eV, and an electron density range from 1017 to 1024 cm-3, the Al ions in the plasma are mainly composed of H-like and He-like ions. The ground-state populations of the H-like and He-like ions, calculated from FAC model, are in good agreement with the results from FLYCHK. Number densities of the excited states are two orders or more less than those of the ground states from both the models, and significant differences are observed in the number densities of n=2 and n=3 states of both the H-like and He-like ions. These differences will further result in the differences in spectral line emissivity and their line emissivity ratio, such as He-IC/He-αup and H-βup/He-βup, which are key parameters used to diagnose the electron temperature and density. The line emissivity ratio Ly-αup/(He-αup+He-IC) is less dependent on the electron density, and the difference in line emissivity ratio between the two models mainly lies in the parameter region where both the electron temperature and density are high. The ratio He-IC/He-αup is less dependent on the electron temperature when the electron density is more than 1019 cm-3 while significant differences are observed at a lower electron density.#br#The reason for the difference between the number densities of the low-energy excited states from FAC and FLYCHK models is analyzed by comparing the rate coefficients of various collisional and radiative processes in the rate equation of each state. The differences in the n=2 excited states of H-like ions come from the fact that FAC and FLYCHK models use the detailed-level model and the super-configuration model respectively to construct the rate equations of these states. The FAC model ignores the collisional excitation and de-excitation processes between the n=3 state and higher excitation states (e.g. n = 4) in H-like and He-like ions, which are responsible for the density difference in the n=3 excited state. Higher Rydberg states considered in FLYCHK model do not have any significant influence on the density of the ground-states. The difference in the absorption coefficient between the two models is smaller than that in the emissivity as discussed above, for the absorption coefficient mainly depends on the number density of the ions in ground state.
    • 基金项目: 国家自然科学基金(批准号: 51237006, 51407138)和中国工程物理研究院脉冲功率科学与技术重点实验室基金(批准号: PPLF2013PZ05)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51237006, 51407138) and the Fund from Key Laboratory of Pulsed Power, China Academy of Engineering Physics (Grant No. PPLF2013PZ05).
    [1]

    Apruzese J P, Whitney K G, Davis J, Kepple P C 1997 J. Quant. Spectrosc. Radiat. Transfer 57 41

    [2]

    Shlyaptseva A S, Hansen S B, Kantsyrev V L, Fedin D A, Ouart N, Fournier K B, Safronova U I 2003 Phys. Rev. E 67 026409

    [3]

    Wu J, Li M, Li X W, Wang L P, Wu G, Guo N, Qiu M T, Qiu A C 2013 Phys. Plasmas 20 082706

    [4]

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G: Phys. Mech. Astron. 39 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑: 物理学 力学 天文学 39 43]

    [5]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [6]

    Gu M F 2008 Can. J. Phys. 86 675

    [7]

    Chung H K, Chen M H, Morgan W L, Ralchenko Yu, Lee R W 2005 High Energ. Dens. Phys. 1 3

    [8]

    Bastiani-Ceccotti S, Renaudin P, Dorchies F, Harmand M, Peyrusse O, Audebert P, Jacquemot S, Calisti A, Benredjem D 2010 High Energ. Dens. Phys. 6 99

    [9]

    Glenzer S H, Fournier K B, Decker C, Hammel B A, Lee R W, Lours L, MacGowan B J, Osterheld A L 2000 Phys. Rev. E 62 2728

    [10]

    Lee R W, Nash J K, Ralchenko Yu 1997 J. Quant Spectrosc. Radiat. Transfer 58 737

    [11]

    Chung H K, Bowen C, Fontes C J, Hansen S B, Ralchenko Yu 2013 High Energ. Dens. Phys. 9 645

    [12]

    Hansen S, Armstrong G S J, Bastiani-Ceccotti S, Bowen C, Chung H K, Colgan J P, de Dortan F, Fontes C J, Gilleron F, Marques J R, Piron R, Peyrusse O, Poirier M, Ralchenko Yu, Sasaki A, Stambulchik E, Thais F 2013 High Energ. Dens. Phys. 9 523

    [13]

    David S 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press) pp216-231

    [14]

    Li J, Xie W P, Huang X B, Yang L B, Cai H C, Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese) [李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康 2010 59 7922]

    [15]

    Gao Q, Wu Z Q, Zhang C F, Li Z H, Xu R K, Zu X T 2012 Acta Phys. Sin. 61 015201 (in Chinese) [高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛 2012 61 015201]

    [16]

    Gao Q, Zhang C F, Zhou L, Li Z H, Wu Z Q, Lei Y, Zhang C L, Zu X T 2014 Acta Phys. Sin. 63 125202 (in Chinese) [高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛 2014 63 125202]

    [17]

    Chambers D M, Pinto P A, Hawreliak J, Al'Miev I R, Gouveia A, Sondhauss P, Wolfrum E, Wark J S, Glenzer S H, Lee R W, Young P E, Renner O, Marjoribanks R S, Topping S 2002 Phys. Rev. E 66 026410

    [18]

    Lucy L B 2001 Mon. Not. R. Astron. Soc. 326 95

    [19]

    Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203

  • [1]

    Apruzese J P, Whitney K G, Davis J, Kepple P C 1997 J. Quant. Spectrosc. Radiat. Transfer 57 41

    [2]

    Shlyaptseva A S, Hansen S B, Kantsyrev V L, Fedin D A, Ouart N, Fournier K B, Safronova U I 2003 Phys. Rev. E 67 026409

    [3]

    Wu J, Li M, Li X W, Wang L P, Wu G, Guo N, Qiu M T, Qiu A C 2013 Phys. Plasmas 20 082706

    [4]

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G: Phys. Mech. Astron. 39 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑: 物理学 力学 天文学 39 43]

    [5]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [6]

    Gu M F 2008 Can. J. Phys. 86 675

    [7]

    Chung H K, Chen M H, Morgan W L, Ralchenko Yu, Lee R W 2005 High Energ. Dens. Phys. 1 3

    [8]

    Bastiani-Ceccotti S, Renaudin P, Dorchies F, Harmand M, Peyrusse O, Audebert P, Jacquemot S, Calisti A, Benredjem D 2010 High Energ. Dens. Phys. 6 99

    [9]

    Glenzer S H, Fournier K B, Decker C, Hammel B A, Lee R W, Lours L, MacGowan B J, Osterheld A L 2000 Phys. Rev. E 62 2728

    [10]

    Lee R W, Nash J K, Ralchenko Yu 1997 J. Quant Spectrosc. Radiat. Transfer 58 737

    [11]

    Chung H K, Bowen C, Fontes C J, Hansen S B, Ralchenko Yu 2013 High Energ. Dens. Phys. 9 645

    [12]

    Hansen S, Armstrong G S J, Bastiani-Ceccotti S, Bowen C, Chung H K, Colgan J P, de Dortan F, Fontes C J, Gilleron F, Marques J R, Piron R, Peyrusse O, Poirier M, Ralchenko Yu, Sasaki A, Stambulchik E, Thais F 2013 High Energ. Dens. Phys. 9 523

    [13]

    David S 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press) pp216-231

    [14]

    Li J, Xie W P, Huang X B, Yang L B, Cai H C, Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese) [李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康 2010 59 7922]

    [15]

    Gao Q, Wu Z Q, Zhang C F, Li Z H, Xu R K, Zu X T 2012 Acta Phys. Sin. 61 015201 (in Chinese) [高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛 2012 61 015201]

    [16]

    Gao Q, Zhang C F, Zhou L, Li Z H, Wu Z Q, Lei Y, Zhang C L, Zu X T 2014 Acta Phys. Sin. 63 125202 (in Chinese) [高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛 2014 63 125202]

    [17]

    Chambers D M, Pinto P A, Hawreliak J, Al'Miev I R, Gouveia A, Sondhauss P, Wolfrum E, Wark J S, Glenzer S H, Lee R W, Young P E, Renner O, Marjoribanks R S, Topping S 2002 Phys. Rev. E 66 026410

    [18]

    Lucy L B 2001 Mon. Not. R. Astron. Soc. 326 95

    [19]

    Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203

  • [1] 王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov. 激光诱导放电等离子体极紫外辐射的模拟.  , 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [2] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响.  , 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法.  , 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [4] 孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪. 类硼S离子K壳层激发共振态的辐射和俄歇跃迁.  , 2019, 68(16): 163101. doi: 10.7498/aps.68.20190481
    [5] 熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进. 掺Yb硅酸盐玻璃的热漂白性能研究.  , 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [6] 张磊, 岳昊, 李梅, 王帅, 米雪玉. 拥堵疏散的行人拥挤力仿真研究.  , 2015, 64(6): 060505. doi: 10.7498/aps.64.060505
    [7] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [8] 李晋华, 王召巴, 王志斌, 张敏娟, 曹俊卿. 氧气A带吸收系数的温度依赖关系研究.  , 2014, 63(21): 214204. doi: 10.7498/aps.63.214204
    [9] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用.  , 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用.  , 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [11] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱.  , 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [12] 李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用.  , 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [13] 李九生, 李向军. 玉米油光学参数的太赫兹波精确测定研究.  , 2009, 58(8): 5805-5809. doi: 10.7498/aps.58.5805
    [14] 延凤平, 王琳, 魏淮, 傅永军, 简伟, 郑凯, 毛向桥, 李坚, 刘利松, 彭健, 简水生. 石英基掺Yb3+光纤中Al3+共掺特性的研究.  , 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [15] 哈斯乌力吉, 吕志伟, 公 胜, 何伟明, 林殿阳, 张 伟. 受激布里渊散射新介质——全氟胺的研究.  , 2008, 57(10): 6360-6364. doi: 10.7498/aps.57.6360
    [16] 胡 颖, 王晓红, 郭澜涛, 张存林, 刘海波, 张希成. 植物油和动物脂肪在THz波段的吸收和色散.  , 2005, 54(9): 4124-4128. doi: 10.7498/aps.54.4124
    [17] 周拥华, 张义门, 张玉明, 孟祥志. 6H-SiC pn结紫外光探测器的模拟与分析.  , 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
    [18] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究.  , 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [19] 郑大章, 杨承宗. β射线之吸收系数.  , 1947, 7(1): 29-47. doi: 10.7498/aps.7.29
    [20] 任之恭. H~-之吸收系数.  , 1936, 2(1): 38-42. doi: 10.7498/aps.2.38
计量
  • 文章访问数:  5710
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-17
  • 修回日期:  2015-06-16
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map