搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z箍缩动态黑腔形成过程MULTI程序一维数值模拟

吴福源 禇衍运 叶繁 李正宏 杨建伦 Rafael Ramis 王真 祁建敏 周林 梁川

引用本文:
Citation:

Z箍缩动态黑腔形成过程MULTI程序一维数值模拟

吴福源, 禇衍运, 叶繁, 李正宏, 杨建伦, Rafael Ramis, 王真, 祁建敏, 周林, 梁川

One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI

Wu Fu-Yuan, Chu Yan-Yun, Ye Fan, Li Zheng-Hong, Yang Jian-Lun, Rafael Ramis, Wang Zhen, Qi Jian-Min, Zhou Lin, Liang Chuan
PDF
导出引用
  • Z箍缩动态黑腔能够高效地将Z箍缩丝阵等离子体动能转换为黑腔辐射能,为驱动惯性约束靶丸聚变提供高品质的X射线辐射场.利用一维双温多群辐射磁流体力学程序MULTI-IFE,研究了聚龙一号装置驱动电流条件下的Z箍缩动态黑腔形成基本物理过程.数值模拟结果表明,在动态黑腔形成过程中,辐射热波的传播速度比冲击波的传播速度更快,比冲击波更早到达泡沫中心,使中心区域的泡沫在冲击波到达前就已具有较高的辐射温度.对于聚龙一号装置动态黑腔实验0180发次采用的负载参数,辐射热波和冲击波在泡沫中的传播速度分别约为36.1 cm/s和17.6 cm/s,黑腔辐射温度在黑腔形成初期约80 eV,在冲击波到达泡沫中心前可达100 eV以上,丝阵等离子体外表面发射的X射线能量集中在1000 eV以下.本文给出了程序采用的计算模型、美国土星装置丝阵内爆计算结果和聚龙一号装置动态黑腔实验0180发次模拟结果.
    Z-pinch dynamic hohlraum can effectively convert Z-pinch plasma kinetic energy into radiation field energy, which has a potential to implode a pellet filled with deuterium-tritium fuel to fusion conditions when the drive current is sufficiently large. To understand the formation process of Z-pinch dynamic hohlraum on JULONG-I facility with a typical drive current of 8-10 MA, a new radiation magneto-hydrodynamics code is developed based on the program MULTI-IFE. MULTI-IFE is a one-dimensional, two-temperature, multi-group, open-source radiation hydrodynamic code, which is initially designed for laser and heavy ion driven fusion. The original program is upgraded to simulate Z-pinch related experiments by introducing Lorentz force, Joule heating and the evolution of magnetic field into the code. Numerical results suggest that a shock wave and a thermal wave will be launched when the high speed plasma impacts onto the foam converter. The thermal wave propagates much faster than shock wave, making the foam become hot prior to the arrival of shock wave. For the load parameters and drive current of shot 0180, the calculated propagation speed of thermal wave and shock wave are about 36.1 cm/s and 17.6 cm/s, respectively. The shock wave will be reflected when it arrives at the foam center and the speed of reflected shock wave is about 12.9 cm/s. Calculations also indicate that the plastic foam will expand obviously due to the high temperature radiation environment (~30 eV) around it before the collision between tungsten plasma and foam converter. The evolution of radial radiation temperature profile shows that a pair of bright strips pointing to the foam center can be observed by an on-axis streak camera and the radiation temperature in the foam center achieves its highest value when the shock arrives at the axis. A bright emission ring moving towards the foam center can also be observed by an on-axis X-ray frame camera. The best time to capture the bright strips and bright emission rings is before the thermal wave reaches the foam center. Even though some amount of X-ray radiation in the foam is expected to escape from the hohlraum via radiation transport process, simulation results suggest that the tungsten plasma can serve as a good hohlraum wall. The radiation temperature is about 80 eV when the dynamic hohlraum is created and can rise more than 100 eV before the shock arrives at the foam center. Most of the X-rays emitted by the wire-array plasma surface have energies below 1000 eV. In this paper, the physical model of the code MULTI-IFE and the simulation results of array implosions on Saturn facility are presented as well.
      通信作者: 李正宏, lee_march@sina.com
    • 基金项目: 国家自然科学基金(批准号:11135007,11305155)、西班牙经济与竞争力部(批准号:ENE2014-54960-R)和欧盟聚变联盟(批准号:AWP15-ENR-01/CEA-02)资助的课题.
      Corresponding author: Li Zheng-Hong, lee_march@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11135007, 11305155), the Spanish Ministerio de Economia y Competitividad (Grant No. ENE2014-54960-R), and the EUROfusion Consortium Project(Grant No. AWP15-ENR-01/CEA-02).
    [1]

    Peng X J, Hua X S 2008 Eng. Sci. 10 47 (in Chinese) [彭先觉, 华欣生 2008 中国工程科学 10 47]

    [2]

    Li Z H, Huang H W, Wang Z, Chen X J, Qi J M, Guo H B, Ma J M, Xiao C J, Chu Y Y, Zhou L 2014 High Power Laser and Particle Beams 26 26100202 (in Chinese) [李正宏, 黄洪文, 王真, 陈晓军, 祁建敏, 郭海兵, 马纪敏, 肖成建, 褚衍运, 周林 2014 强激光与粒子束 26 26100202]

    [3]

    Sanford W L, Olson R E, Mock R C, Chandler G A, Leeper R J, Nash T J, Ruggles L E, Simpson W W, Struve K W, Peterson D L, Bowers R L, Matuska W 2000 Phys. Plasmas 7 4669

    [4]

    Bennett G R, Cuneo M E, Vesey R A, Porter J L, Adams R G, Aragon R A, Caird J A, Landen O L, Rambo P K, Rovang D C, Ruggles L, Simpson W W, Smith I C, Wenger D F 2002 Phys. Rev. Lett. 89 245002

    [5]

    Sanford T W, Lemke R W, Mock R C, Chandler G A, Leeper R J, Ruiz C L, Peterson D L, Chrien R E, Idzorek G C, Watt R G, Chittenden J P 2002 Phys. Plasmas 9 3573

    [6]

    Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697

    [7]

    Brownell J H, Bowners R L, Mclenithan K D, Peterson D L 1998 Phys. Plasmas 5 2071

    [8]

    Nash T J, Derzon M S, Allshouse G O, Deeney C, Seaman J F, Mcgurn J S, Jobe D, Gilliland T L, Macfarlane J J, Wang P, Petersen D 1997 AIP Conf. Proc. 409 175

    [9]

    Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G W, Lash J S, Lazier S E, Lemke R W, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R M, Torres J A, Vesey R A 2002 Phys. Rev. Lett. 89 095004

    [10]

    Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G, Lake P, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D A, Stygar W A, Varnum W 2007 Plasma Phys. Control. Fusion 49 B591

    [11]

    Xu R K, Li Z H, Yang J L, Ding N, Zhou X W, Jiang S L, Zhang F Q, Wang Z, Xu Z P, Ning J M, Li L B, Grabovsky E V, Oleynic G M, Alexandrov V V, Smirnov V 2011 Acta Phys. Sin. 60 045208 (in Chinese) [徐荣昆, 李正宏, 杨建伦, 丁宁, 周秀文, 蒋世伦, 章法强, 王真, 许泽平, 宁家敏, 李林波, Grabovsky E V, Oleynic G M, Alexandrov V V, Smirnov V 2011 60 045208]

    [12]

    Ding N, Wu J M, Dai Z H, Zhang Y, Yin L, Yao Y Z, Sun S K, Ning C, Shu X J 2010 Acta Phys. Sin. 59 8707 (in Chinese) [丁宁, 邬吉明, 戴自换, 张扬, 尹丽, 姚彦忠, 孙顺凯, 宁成, 束小建 2010 59 8707]

    [13]

    Ning C, Feng Z X, Xue C 2014 Acta Phys. Sin. 63 125208 (in Chinese) [宁成, 丰志兴, 薛创 2014 63 125208]

    [14]

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding N 2015 Acta Phys. Sin. 64 235203 (in Chinese) [肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 64 235203]

    [15]

    Meng S J, Huang Z C, Ning J M, Hu Q Y, Ye F, Qin Y, Xu Z P, Xu R K 2016 Acta Phys. Sin. 65 075201 (in Chinese) [蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆 2016 65 075201]

    [16]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [17]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226

    [18]

    Ramis R 2017 J. Comput. Phys. 330 173

    [19]

    Oliphant T A 1981 RAVEN Physical Manual Los Alamos Scientific Laboratory Report LA-8802-M

    [20]

    Wang G H 2002 Ph. D. Dissertation (Beijing: Graduate School of Chinese Academy of Engineering Physics) (in Chinese) [王刚华 2002 博士学位论文 (北京: 中国工程物理研究院北京研究生部)]

    [21]

    Yan Q J 2006 Numerical Analysis (Beijing: Beihang University Press) p27 (in Chinese) [颜庆津2006 数值分析 (北京: 北京航空航天大学出版社) 第27页]

    [22]

    Deeney C, Nash T J, Spielman R B, Seaman J F, Chandler G, Struve K W, Porter J L, Stygar W A, Mcgurn J S, Jobe D, Gilliland T L, Torres J A, Vargas M F, Ruggles L E, Breeze S P, Mock R C, Douglas M R, Fehl D L, Mcdaniel D H, Matzen M K, Peterson D L, Matuska W, Roderick N F, Macfarlane J J 1997 Phys. Rev. E 56 5945

    [23]

    Ding N, Wu J M, Yang Z H, Fu S W, Ning C, Liu Q, Shu X J, Zhang Y, Dai Z H 2008 High Power Laser and Particle Beams 20 212 (in Chinese) [丁宁, 邬吉明, 杨震华, 符尚武, 宁成, 刘全, 束小建, 张扬, 戴自换 2008 强激光与粒子束 20 212]

    [24]

    Thornhill J W, Whitney K G, Deeney C, Lepell P D 1994 Phys. Plasmas 1 321

    [25]

    Ning C, Sun S K, Xiao D L, Zhang Y, Ding N, Huang J, Xue C, Shu X J 2010 Phys. Plasmas 17 062703

    [26]

    Peterson D L, Bowers R L, McLenithan K D, Deeney C, Chandler G A, Spielman R B, Matzen M K, Roderick N F 1998 Phys. Plasmas 5 3302

    [27]

    Sanford T W, Allshouse G O, Marder B M, Nash T J, Mock R C, Spielman R B, Seamen J F, Mcgurn J S, Jobe D, Gilliland T L, Vargas M, Struve K W, Stygar W A, Douglas M R, Matzen M K, Hammer J H, Groot J S, Eddleman J L, Peterson D L, Mosher D, Whitney K G, Thornhill J W, Pulsifer P E, Apruzese J P, Maron Y 1996 Phys. Rev. Lett. 77 5063

    [28]

    Xiao D L, Ding N, Sun S K, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H 2014 Phys. Plasmas 21 042704

  • [1]

    Peng X J, Hua X S 2008 Eng. Sci. 10 47 (in Chinese) [彭先觉, 华欣生 2008 中国工程科学 10 47]

    [2]

    Li Z H, Huang H W, Wang Z, Chen X J, Qi J M, Guo H B, Ma J M, Xiao C J, Chu Y Y, Zhou L 2014 High Power Laser and Particle Beams 26 26100202 (in Chinese) [李正宏, 黄洪文, 王真, 陈晓军, 祁建敏, 郭海兵, 马纪敏, 肖成建, 褚衍运, 周林 2014 强激光与粒子束 26 26100202]

    [3]

    Sanford W L, Olson R E, Mock R C, Chandler G A, Leeper R J, Nash T J, Ruggles L E, Simpson W W, Struve K W, Peterson D L, Bowers R L, Matuska W 2000 Phys. Plasmas 7 4669

    [4]

    Bennett G R, Cuneo M E, Vesey R A, Porter J L, Adams R G, Aragon R A, Caird J A, Landen O L, Rambo P K, Rovang D C, Ruggles L, Simpson W W, Smith I C, Wenger D F 2002 Phys. Rev. Lett. 89 245002

    [5]

    Sanford T W, Lemke R W, Mock R C, Chandler G A, Leeper R J, Ruiz C L, Peterson D L, Chrien R E, Idzorek G C, Watt R G, Chittenden J P 2002 Phys. Plasmas 9 3573

    [6]

    Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697

    [7]

    Brownell J H, Bowners R L, Mclenithan K D, Peterson D L 1998 Phys. Plasmas 5 2071

    [8]

    Nash T J, Derzon M S, Allshouse G O, Deeney C, Seaman J F, Mcgurn J S, Jobe D, Gilliland T L, Macfarlane J J, Wang P, Petersen D 1997 AIP Conf. Proc. 409 175

    [9]

    Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G W, Lash J S, Lazier S E, Lemke R W, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R M, Torres J A, Vesey R A 2002 Phys. Rev. Lett. 89 095004

    [10]

    Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G, Lake P, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D A, Stygar W A, Varnum W 2007 Plasma Phys. Control. Fusion 49 B591

    [11]

    Xu R K, Li Z H, Yang J L, Ding N, Zhou X W, Jiang S L, Zhang F Q, Wang Z, Xu Z P, Ning J M, Li L B, Grabovsky E V, Oleynic G M, Alexandrov V V, Smirnov V 2011 Acta Phys. Sin. 60 045208 (in Chinese) [徐荣昆, 李正宏, 杨建伦, 丁宁, 周秀文, 蒋世伦, 章法强, 王真, 许泽平, 宁家敏, 李林波, Grabovsky E V, Oleynic G M, Alexandrov V V, Smirnov V 2011 60 045208]

    [12]

    Ding N, Wu J M, Dai Z H, Zhang Y, Yin L, Yao Y Z, Sun S K, Ning C, Shu X J 2010 Acta Phys. Sin. 59 8707 (in Chinese) [丁宁, 邬吉明, 戴自换, 张扬, 尹丽, 姚彦忠, 孙顺凯, 宁成, 束小建 2010 59 8707]

    [13]

    Ning C, Feng Z X, Xue C 2014 Acta Phys. Sin. 63 125208 (in Chinese) [宁成, 丰志兴, 薛创 2014 63 125208]

    [14]

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding N 2015 Acta Phys. Sin. 64 235203 (in Chinese) [肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 64 235203]

    [15]

    Meng S J, Huang Z C, Ning J M, Hu Q Y, Ye F, Qin Y, Xu Z P, Xu R K 2016 Acta Phys. Sin. 65 075201 (in Chinese) [蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆 2016 65 075201]

    [16]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [17]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226

    [18]

    Ramis R 2017 J. Comput. Phys. 330 173

    [19]

    Oliphant T A 1981 RAVEN Physical Manual Los Alamos Scientific Laboratory Report LA-8802-M

    [20]

    Wang G H 2002 Ph. D. Dissertation (Beijing: Graduate School of Chinese Academy of Engineering Physics) (in Chinese) [王刚华 2002 博士学位论文 (北京: 中国工程物理研究院北京研究生部)]

    [21]

    Yan Q J 2006 Numerical Analysis (Beijing: Beihang University Press) p27 (in Chinese) [颜庆津2006 数值分析 (北京: 北京航空航天大学出版社) 第27页]

    [22]

    Deeney C, Nash T J, Spielman R B, Seaman J F, Chandler G, Struve K W, Porter J L, Stygar W A, Mcgurn J S, Jobe D, Gilliland T L, Torres J A, Vargas M F, Ruggles L E, Breeze S P, Mock R C, Douglas M R, Fehl D L, Mcdaniel D H, Matzen M K, Peterson D L, Matuska W, Roderick N F, Macfarlane J J 1997 Phys. Rev. E 56 5945

    [23]

    Ding N, Wu J M, Yang Z H, Fu S W, Ning C, Liu Q, Shu X J, Zhang Y, Dai Z H 2008 High Power Laser and Particle Beams 20 212 (in Chinese) [丁宁, 邬吉明, 杨震华, 符尚武, 宁成, 刘全, 束小建, 张扬, 戴自换 2008 强激光与粒子束 20 212]

    [24]

    Thornhill J W, Whitney K G, Deeney C, Lepell P D 1994 Phys. Plasmas 1 321

    [25]

    Ning C, Sun S K, Xiao D L, Zhang Y, Ding N, Huang J, Xue C, Shu X J 2010 Phys. Plasmas 17 062703

    [26]

    Peterson D L, Bowers R L, McLenithan K D, Deeney C, Chandler G A, Spielman R B, Matzen M K, Roderick N F 1998 Phys. Plasmas 5 3302

    [27]

    Sanford T W, Allshouse G O, Marder B M, Nash T J, Mock R C, Spielman R B, Seamen J F, Mcgurn J S, Jobe D, Gilliland T L, Vargas M, Struve K W, Stygar W A, Douglas M R, Matzen M K, Hammer J H, Groot J S, Eddleman J L, Peterson D L, Mosher D, Whitney K G, Thornhill J W, Pulsifer P E, Apruzese J P, Maron Y 1996 Phys. Rev. Lett. 77 5063

    [28]

    Xiao D L, Ding N, Sun S K, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H 2014 Phys. Plasmas 21 042704

  • [1] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析.  , 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学.  , 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [3] 张扬, 孙顺凯, 丁宁, 李正宏, 束小建. 准球形电磁内爆动力学研究及能量定标关系浅析.  , 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [4] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟.  , 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [5] 蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆. Z箍缩动态黑腔冲击波辐射图像诊断.  , 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [6] 肖德龙, 孙顺凯, 薛创, 张扬, 丁宁. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究.  , 2015, 64(23): 235203. doi: 10.7498/aps.64.235203
    [7] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正.  , 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [8] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取.  , 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [9] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征.  , 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [10] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射.  , 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [11] 陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 许泽平. Z箍缩动态黑腔阴影像诊断研究.  , 2013, 62(4): 045204. doi: 10.7498/aps.62.045204
    [12] 盛亮, 邱孟通, 黑东炜, 邱爱慈, 丛培天, 王亮平, 魏福利. 丝阵负载Z箍缩内爆动力学研究.  , 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [13] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断.  , 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [14] 徐荣昆, 李正宏, 杨建伦, 丁宁, 周秀文, 蒋世伦, 章法强, 王真, 许泽平, 宁家敏, 李林波, E. V. Grabovsky, G. M. Oleynic, V. V. Alexandrov, V. P. Smirnov. 中俄Z-pinch联合实验新进展.  , 2011, 60(4): 045208. doi: 10.7498/aps.60.045208
    [15] 夏广新, 章法强, 许泽平, 徐荣昆, 陈进川, 宁家敏. 单层丝阵负载Z箍缩内爆辐射特性研究.  , 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [16] 吴刚, 邱爱慈, 吕敏, 蒯斌, 王亮平, 丛培天, 邱孟通, 雷天时, 孙铁平, 郭宁, 韩娟娟, 张信军, 黄涛, 张国伟, 乔开来. “强光一号”Al丝阵Z箍缩产生K层辐射实验研究.  , 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [17] 邱爱慈, 蒯 斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕 敏. “强光一号”钨丝阵Z箍缩等离子体辐射特性研究.  , 2006, 55(11): 5917-5922. doi: 10.7498/aps.55.5917
    [18] 宁 成, 丁 宁, 刘 全, 杨震华. 双层钨丝阵的Z箍缩动力学过程研究.  , 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [19] 黄显宾, 杨礼兵, 顾元朝, 邓建军, 周荣国, 邹 杰, 周少彤, 张思群, 陈光华, 畅里华, 李丰平, 欧阳凯, 李 军, 杨 亮, 王 雄, 张朝辉. 氩气Z箍缩内爆动力学过程实验研究.  , 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [20] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波.  , 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
计量
  • 文章访问数:  6347
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-27
  • 修回日期:  2017-07-10
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map