-
开展了波长为532 nm、脉宽为8 ns的纳秒激光诱导空气等离子体射频电磁辐射特性实验研究,基于锥形天线探测空气等离子体在30–800 MHz频谱范围有较强的射频电磁辐射,是等离子体内电偶极子振荡变速运动造成的.实验结果表明:随激光能量增加,30–200 MHz范围内射频辐射强度逐渐变强,但360–600 MHz频率范围射频辐射强度逐渐变弱.等离子体射频辐射的空间分布依赖于入射激光的偏振方向,当激光偏振方向与天线放置方向一致时,该方向上空气等离子体的射频辐射强度高,谱线较丰富.射频辐射总功率随激光能量先增加后降低,采用等离子体电子密度变化对等离子体频率及等离子体衰减系数影响(制约)关系,对射频辐射总功率随激光能量的变化规律进行了解释.The radio-frequency (RF) emissions in a range from 30 MHz to 800 MHz from the plasma, which is produced by the nanosecond laser (532 nm, 8 ns) induced breakdown of atmospheric air, are presented. A spectrum analyzer which can scan over a spectral range of 9 kHz-26.5 GHz is used to record the RF-range radiation intensities of the emission from the plasma. RF electromagnetic radiations from the laser induced breakdown of atmospheric air are obtained for different input laser energies. A half-wave plate and a Glan prism are used to vary the input laser energy. Experimental results show that the intensities of RF radiation in a range of 30-200 MHz increase with the increase of laser energy, but the intensities of RF radiation in a 360-600 MHz frequency range decrease. To study the effect of input laser polarization on the RF radiation, we adopt the input lasers with vertical and horizontal polarization respectively. When the polarizations of the input laser and the antenna are the same, the RF radiation intensity is relatively high, and the frequency lines are relatively abundant. The changing relationship between the total power of RF radiation and the energy of the input laser is calculated and analyzed. It is observed that the total power of RF radiation first increases and then decreases with the increase of input laser energy. The influences of the plasma electron density on the plasma frequency and the plasma attenuation coefficient are investigated to explain the relationship between the total power of the RF radiation and the laser energy. The RF radiation is caused by the following processes. The generated electrons and ions are accelerated away from the core by their thermal pressures. This leads to charge separation and forming the electric dipole moments. These oscillating electric dipoles radiate electromagnetic waves in the RF range. Furthermore, the interactions of electrons with atomic and molecular clusters within the plasma play a major role in RF radiation, and the low frequency electromagnetic radiation takes place from the plasma that is far from fully ionized state. Further study of the characteristics of RF electromagnetic radiation is of great significance for understanding the physical mechanism of the interaction between laser and matter.
[1] Chen Z Y, Li J F, Li J, Peng Q X 2011 Phys. Scr. 83 055503
[2] Li N, Bai Y, Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)[李娜, 白亚, 刘鹏2016 65 110701]
[3] Dai J M, Lu X F, Liu J, Ho I C, Karpowicz N, Zhang X 2009 THz Sci. Tech. 2 131
[4] Sizyuk T, Hassanein A 2014 Phys. Plasmas 21 083106
[5] Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote. Sens. Lett. 6 718
[6] Basov N G, Kriukov P, Zakharov S, Senatsky Y, Tchekalin S 1968 IEEE J. Quant. Elect. 4 4864
[7] Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244 032001
[8] Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457
[9] Cheng C C, Wright E M, Moloney J V 2001 Phys. Rev. Lett. 87 213001
[10] Hosseini S A, Ferland B, Chin S L 2003 Appl. Phys. B 76 583
[11] Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2014 Appl. Phys. Lett. 105 064102
[12] Consoli F, Angelis R D, Andreoli P, Cristofari G, Giorgio G D 2015 Phys. Procedia 62 11
[13] Balanis C A 1982 Antenna Theory:Analysis and Design (New York:John Wiley & Sons) pp989-990
[14] Kumar V, Elle M, Paturi P K 2017 J. Phys.:Conf. Ser. 823 012008
[15] Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308
[16] Leela C, Bagchi S, Kumar V R, Tewari S P, Kiran P P 2013 Laser. Part. Beams. 31 263
[17] Tian Y, Yu W, He F, Xu H, Kumar V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106
[18] Akcasu A Z, Wald L H 1967 Phys. Fluids 10 1327
[19] Jackson J D 1975 Classical Electrodynamics (New York:John Wiley & Sons) pp13-34
[20] Gosnell T R 2002 Fundamentals of Spectroscopy and Laser Physics (Cambridge:Cambridge University Press) p12
[21] Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y, Yang G H 2003 Acta Phys. Sin. 52 3098(in Chinese)[张红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪2003 52 3098]
[22] Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2016 J. Appl. Phys. 119 214904
-
[1] Chen Z Y, Li J F, Li J, Peng Q X 2011 Phys. Scr. 83 055503
[2] Li N, Bai Y, Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)[李娜, 白亚, 刘鹏2016 65 110701]
[3] Dai J M, Lu X F, Liu J, Ho I C, Karpowicz N, Zhang X 2009 THz Sci. Tech. 2 131
[4] Sizyuk T, Hassanein A 2014 Phys. Plasmas 21 083106
[5] Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote. Sens. Lett. 6 718
[6] Basov N G, Kriukov P, Zakharov S, Senatsky Y, Tchekalin S 1968 IEEE J. Quant. Elect. 4 4864
[7] Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244 032001
[8] Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457
[9] Cheng C C, Wright E M, Moloney J V 2001 Phys. Rev. Lett. 87 213001
[10] Hosseini S A, Ferland B, Chin S L 2003 Appl. Phys. B 76 583
[11] Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2014 Appl. Phys. Lett. 105 064102
[12] Consoli F, Angelis R D, Andreoli P, Cristofari G, Giorgio G D 2015 Phys. Procedia 62 11
[13] Balanis C A 1982 Antenna Theory:Analysis and Design (New York:John Wiley & Sons) pp989-990
[14] Kumar V, Elle M, Paturi P K 2017 J. Phys.:Conf. Ser. 823 012008
[15] Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308
[16] Leela C, Bagchi S, Kumar V R, Tewari S P, Kiran P P 2013 Laser. Part. Beams. 31 263
[17] Tian Y, Yu W, He F, Xu H, Kumar V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106
[18] Akcasu A Z, Wald L H 1967 Phys. Fluids 10 1327
[19] Jackson J D 1975 Classical Electrodynamics (New York:John Wiley & Sons) pp13-34
[20] Gosnell T R 2002 Fundamentals of Spectroscopy and Laser Physics (Cambridge:Cambridge University Press) p12
[21] Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y, Yang G H 2003 Acta Phys. Sin. 52 3098(in Chinese)[张红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪2003 52 3098]
[22] Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2016 J. Appl. Phys. 119 214904
计量
- 文章访问数: 6701
- PDF下载量: 295
- 被引次数: 0