-
Molecular simulation has already become a powerful tool for studying life principles at a molecular level. The past 50-year researches show that molecular simulation has been able to quantitatively characterize the kinetic and thermodynamic properties of complex molecular processes, such as protein folding and conformational changes. In recent years, the application of machine learning algorithms represented by deep learning has further promoted the development of molecular simulation. This work reviews machine learning methods in biomolecular simulation, focusing on the important progress made by machine learning algorithms in improving the accuracy of molecular force fields, the efficiency of molecular simulation conformation sampling, and also the processing of high-dimensional simulation data. The future researches to further overcome the bottleneck of accuracy and efficiency of molecular simulation, expand the scope of molecular simulation, and realize the integration of computational simulation and experimental based on machine learning technique is prospected.
-
Keywords:
- bio-molecules /
- molecular simulations /
- machine learning /
- enhanced sampling /
- multiscale model
[1] McCammon J A, Gelin B R, Karplus M 1977 Nature 267 585
Google Scholar
[2] Schlick T, Portillo-Ledesma S 2021 Nat. Comput. Sci. 1 321
Google Scholar
[3] Vendruscolo M, Dobson C M 2011 Curr. Biol. 21 R68
Google Scholar
[4] Shaw D E, Maragakis P, Lindorff-Larsen K, et al. 2010 Science 330 341
Google Scholar
[5] Zhou C Y, Jiang F, Wu Y D 2015 J. Phys. Chem. B 119 1035
Google Scholar
[6] Zerze G H, Zheng W, Best R B, Mittal J 2019 J. Phys. Chem. Lett. 10 2227
Google Scholar
[7] Robustelli P, Piana S, Shaw D E 2018 Proc. Natl. Acad. Sci. U.S.A. 115 E4758
[8] Perilla J R, Schulten K 2017 Nat. Commun. 8 15959
Google Scholar
[9] Yu I, Mori T, Ando T, Harada R, Jung J, Sugita Y, Feig M 2016 eLife 5 e19274
Google Scholar
[10] 李文飞, 张建, 王骏, 王炜 2015 64 098701
Google Scholar
Li W F, Zhang J, Wang J, Wang W 2015 Acta Phys. Sin. 64 098701
Google Scholar
[11] Samuel A L 1959 IBM J. Res. Dev. 3 210
Google Scholar
[12] Stigler S M 1974 Hist. Math. 1 431
Google Scholar
[13] Fix E, Hodges J L 1951 Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties (Randolph Field, Texas: USAF School of Aviation Medicine) Tech. Rep. 4
[14] Breiman L, Friedman J H, Olshen R A, Stone C J 1984 Biometrics 40 874
Google Scholar
[15] Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533
Google Scholar
[16] Cortes C, Vapnik V 1995 Mach. Learn. 20 273
Google Scholar
[17] Ho T K 1995 Proceedings of 3rd International Conference on Document Analysis and Recognition Montreal, QC, Canada, August 14–16, 1995 p278
[18] Freund Y, Schapire R E 1996 Proceedings of the Thirteenth International Conference on International Conference on Machine Learning San Francisco, CA, USA, July 1996 p148
[19] Holley L, Karplus M 1989 Proc. Natl. Acad. Sci. U.S.A. 86 152
Google Scholar
[20] Cai Y, Liu X, Xu X, Zhou G 2001 BMC Bioinf. 2 1
Google Scholar
[21] Cai C, Wang W, Sun L, Chen Y 2003 Math. Biosci. 185 111
Google Scholar
[22] Zernov V V, Balakin K V, Ivaschenko A A, Savchuk N P, Pletnev I V 2003 J. Chem. Inf. Comput. Sci. 43 2048
Google Scholar
[23] Blank T B, Brown S D, Calhoun A W, Doren D J 1995 J. Chem. Phys. 103 4129
Google Scholar
[24] Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84
Google Scholar
[25] He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, June 27–30, 2016 p770
[26] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2020 Commun. ACM 63 139
Google Scholar
[27] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems New York, USA, December 4–9, 2017 p6000
[28] Noé F, Olsson S, Köhler J, Wu H 2019 Science 365 eaaw1147
Google Scholar
[29] Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D 2020 Proc. Natl. Acad. Sci. U.S.A. 117 1496
Google Scholar
[30] Jumper J, Evans R, Pritzel A, et al. 2021 Nature 596 583
Google Scholar
[31] Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee G R, Wang J, Cong Q, Kinch L N, Schaeffer R D, Millán C, Park H, Adams C, Glassman C R, DeGiovanni A, Pereira J H, Rodrigues A V, Van Dijk A A, Ebrecht A C, Opperman D J, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy M K, Dalwadi U, Yip C K, Burke J E, Garcia K C, Grishin N V, Adams P D, Read R J, Baker D 2021 Science 373 871
Google Scholar
[32] Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H 2022 Nature 602 523
Google Scholar
[33] Liu Y, Zhang L, Wang W, Zhu M, Wang C, Li F, Zhang J, Li H, Chen Q, Liu H 2022 Nat. Comput. Sci. 2 451
Google Scholar
[34] Köhler J, Chen Y, Krämer A, Clementi C, Noé F 2023 J. Chem. Theory Comput. 19 94216
Google Scholar
[35] Watson J L, Juergens D, Bennett N R, Trippe B L, Yim J, Eisenach H E, Ahern W, Borst A J, Ragotte R J, Milles L F, Wicky B I M, Hanikel N, Pellock S J, Courbet A, Sheffler W, Wang J, Venkatesh P, Sappington I, Torres S V, Lauko A, Bortoli V D, Mathieu E, Ovchinnikov S, Barzilay R, Jaakkola T S, DiMaio F, Baek M, Baker D 2023 Nature 620 1089
Google Scholar
[36] Kuhlman B, Bradley P 2019 Nat. Rev. Mol. Cell Biol. 20 681
Google Scholar
[37] Jisna V, Jayaraj P 2021 Protein J. 40 522
Google Scholar
[38] AlQuraishi M 2021 Curr. Opin. Chem. Biol. 65 1
Google Scholar
[39] Xu Y, Verma D, Sheridan R P, Liaw A, Ma J, Marshall N M, McIntosh J, Sherer E C, Svetnik V, Johnston J M 2020 J. Chem. Inf. Model. 60 2773
Google Scholar
[40] Huang B, Du Y, Zhang S, Li W, Wang J, Zhang J 2020 Chin. Phys. B 29 108704
Google Scholar
[41] Zhang J, Chen D, Xia Y, et al. 2023 J. Chem. Theory Comput. 19 4338
Google Scholar
[42] Ramanathan A, Ma H, Parvatikar A, Chennubhotla S C 2021 Curr. Opin. Struct. Biol. 66 216
Google Scholar
[43] Noé F, Tkatchenko A, Müller K R, Clementi C 2020 Annu. Rev. Phys. Chem. 71 361
Google Scholar
[44] Wang Y, Ribeiro J M L, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139
Google Scholar
[45] Sambasivarao S V, Acevedo O 2009 J. Chem. Theory Comput. 5 1038
Google Scholar
[46] Brooks B R, Brooks Ⅲ C L, Mackerell Jr. A D, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor B, Venable R M, Woodcock H L, Wu X, Yang W, York D M, Karplus M 2009 J. Comput. Chem. 30 1545
Google Scholar
[47] Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 528
Google Scholar
[48] Peng X, Zhang Y, Chu H, Li Y, Zhang D, Cao L, Li G 2016 J. Chem. Theory Comput. 12 2973
Google Scholar
[49] Liu C, Qi R, Wang Q, Piquemal J P, Ren P 2017 J. Chem. Theory Comput. 13 2751
Google Scholar
[50] Schütt K T, Kindermans P J, Sauceda H E, Chmiela S, Tkatchenko A, Müller K R 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems New York, USA, December 4–9, 2017 p992
[51] Zhang L, Han J, Wang H, Car R, Weinan E 2018 Phys. Rev. Lett. 120 143001
Google Scholar
[52] Zhang L, Han J, Wang H, Car R, Weinan E 2018 J. Chem. Phys. 149 034101
Google Scholar
[53] Park C W, Kornbluth M, Vandermause J, Wolverton C, Kozinsky B, Mailoa J P 2021 npj Comput. Mater. 7 73
Google Scholar
[54] batznerzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B 2022 Nat. Commun. 13 2453
Google Scholar
[55] Wang Y, Li S, He X, Li M, Wang Z, Zheng N, Shao B, Wang T, Liu T Y 2022 arXiv: 2210.16518 [cs.LG
[56] Zhang L F, Han J Q, Wang H, Saidi W, Car R, E W H 2018 Advances in Neural Information Processing Systems Montreal, Canada, Decembe 3–8, 2018 p4441
[57] Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401
Google Scholar
[58] Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135
Google Scholar
[59] Smith J S, Isayev O, Roitberg A E 2017 Chem. Sci. 8 3192
Google Scholar
[60] Fan Z, Wang Y, Ying P, et al. 2022 J. Chem. Phys. 157 114801
Google Scholar
[61] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T, Müller K R 2017 Sci. Adv. 3 e1603015
Google Scholar
[62] Gilmer N M P, Schoenholz S S, Riley P F, Vinyals O, Dahl G E 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6–11, 2017 p1263
[63] Wang X, Xu Y, Zheng H, Yu K 2021 J. Phys. Chem. Lett. 12 7982
Google Scholar
[64] Takada S, Kanada R, Tan C, Terakawa T, Li W, Kenzaki H 2015 Acc. Chem. Res. 48 3026
Google Scholar
[65] Reith D, Pütz M, Müller-Plathe F 2003 J. Comput. Chem. 24 1624
Google Scholar
[66] Izvekov S, Voth G A 2005 J. Phys. Chem. B 109 2469
Google Scholar
[67] Chu J W, Ayton G, Izvekov S, Voth G 2007 Mol. Phys. 105 167
Google Scholar
[68] Li W, Wolynes P G, Takada S 2011 Proc. Natl. Acad. Sci. U.S.A. 108 3504
Google Scholar
[69] Gohlke H, Kiel C, Case D A 2003 J. Mol. Biol. 330 891
Google Scholar
[70] Wang J, Olsson S, Wehmeyer C, Pérez A, Charron N E, De Fabritiis G, Noé F, Clementi C 2019 ACS Cent. Sci. 5 755
Google Scholar
[71] Arts M, Satorras V G, Huang C W, Zuegner D, Federici M, Clementi C, Noé F, Pinsler R, van den Berg R 2023 arXiv: 2302.00600 [cs.LG
[72] Wang W, Gómez-Bombarelli R 2019 Npj Comput. Mater. 5 125
Google Scholar
[73] Zhang J, Lei Y K, Yang Y I, Gao Y Q 2020 J. Chem. Phys. 153 174115
Google Scholar
[74] Dong T, Gong T, Li W 2021 J. Phys. Chem. B 125 9490
Google Scholar
[75] Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812
Google Scholar
[76] Souza P C T, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks B M H, Wassenaar T A, Kroon P C, Melcr J, Nieto V, Corradi V, Khan H M, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best R B, Vattulainen I, Monticelli L, Periole1 X, Tieleman D P, de Vries A H, Marrink S J 2021 Nat. Methods 18 382
Google Scholar
[77] Shrake A, Rupley J A 1973 J. Mol. Biol. 79 351
Google Scholar
[78] Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187
Google Scholar
[79] Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141
Google Scholar
[80] Laio A, Parrinello M 2002 Proc. Natl. Acad. Sci. U.S.A. 99 12562
Google Scholar
[81] Hamelberg D, Mongan J, McCammon J A 2004 J. Chem. Phys. 120 11919
Google Scholar
[82] Yang L, Liu C W, Shao Q, Zhang J, Gao Y Q 2015 Acc. Chem. Res. 48 947
Google Scholar
[83] Tribello G A, Bonomi M, Branduardi D, Camilloni C, Bussi G 2014 Comput. Phys. Commun. 185 604
Google Scholar
[84] E W, Ren W, Vanden-Eijnden E 2002 Phys. Rev. B 66 052301
[85] Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964
Google Scholar
[86] Chen C, Huang Y, Xiao Y 2013 J. Biomol. Struct. Dyn. 31 206
Google Scholar
[87] Zhang J, Gong H 2020 J. Chem. Theory Comput. 16 4813
Google Scholar
[88] Zhu W, Zhang J, Wang J, Li W, Wang W 2021 Phys. Rev. E 103 032404
Google Scholar
[89] Zheng S, He J, Liu C, et al. 2023 arXiv: 2306.05445 [physics.chem-ph
[90] Schneider E, Dai L, Topper R Q, Drechsel-Grau C, Tuckerman M E 2017 Phys. Rev. Lett. 119 150601
Google Scholar
[91] Jolliffe I T 2002 Principal Component Analysis for Special Types of Data (New York: Springer) pp338–372
[92] Tenenbaum J B, de Silva V, Langford J C 2000 Science 290 2319
Google Scholar
[93] Lafon S, Lee A B 2006 IEEE Trans. Pattern Anal. Mach. Intell. 28 1393
Google Scholar
[94] Das P, Moll M, Stamati H, Kavraki L E, Clementi C 2006 Proc. Natl. Acad. Sci. U.S.A. 103 9885
Google Scholar
[95] Plaku E, Stamati H, Clementi C, Kavraki L E 2007 Proteins Struct. Funct. Bioinf. 67 897
Google Scholar
[96] Trstanova Z, Leimkuhler B, Lelièvre T 2020 Proc. R. Soc. A 476 20190036
Google Scholar
[97] van der Maaten L, Hinton G 2008 J. Mach. Learn. Res. 9 2579
[98] Hinton G, Roweis S 2002 Proceedings of the 15th International Conference on Neural Information Processing Systems Vancouver, British Columbia, Canada, December 9–14, 2002 p857
[99] Li W, Terakawa T, Wang W, Takada S 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17789
Google Scholar
[100] Rydzewski J, Nowak W 2016 J. Chem. Theory Comput. 12 2110
Google Scholar
[101] Zhou H, Wang F, Tao P 2018 J. Chem. Theory Comput. 14 5499
Google Scholar
[102] Spiwok V, Kříž P 2020 Front. Mol. Biosci. 7 132
Google Scholar
[103] Roweis S T, Saul L K 2000 Science 290 2323
Google Scholar
[104] Belkin M, Niyogi P 2001 Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic Vancouver, British Columbia, Canada, December 3–8, 2001 p585
[105] Donoho D L, Grimes C 2003 Proc. Natl. Acad. Sci. U.S.A. 100 5591
Google Scholar
[106] McInnes L, Healy J, Melville J 2018 arXiv: 1802.03426 [stat.ML
[107] Chen S, Lake B B, Zhang K 2019 Nat. Biotechnol. 37 1452
Google Scholar
[108] Mimitou E P, Lareau C A, Chen K Y, et al 2021 Nat. Biotechnol. 39 1246
Google Scholar
[109] Becht E, McInnes L, Healy J, Dutertre C A, Kwok I W, Ng L G, Ginhoux F, Newell E W 2019 Nat. Biotechnol. 37 38
Google Scholar
[110] Trozzi F, Wang X, Tao P 2021 J. Phys. Chem. B 125 5022
Google Scholar
[111] Do V H, Canzar S 2021 Genome Biol. 22 130
Google Scholar
[112] Kingma D P, Welling M 2013 arXiv:1312.6114 [stat.ML
[113] Ramaswamy V K, Musson S C, Willcocks C G, Degiacomi M T 2021 Phys. Rev. X 11 011052
Google Scholar
[114] Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobatznero J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A 2018 ACS Cent. Sci. 4 268
Google Scholar
[115] Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603
Google Scholar
[116] Bonati L, Zhang Y Y, Parrinello M 2019 Proc. Natl. Acad. Sci. U.S.A. 116 17641
Google Scholar
[117] Zhang J, Yang Y I, Noé F 2019 J. Phys. Chem. Lett. 10 5791
Google Scholar
[118] Rezende D J, Mohamed S 2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning 37 1530
[119] Shamsi Z, Cheng K J, Shukla D 2018 J. Phys. Chem. B 122 8386
Google Scholar
[120] Zhang L, Wang H, E W 2018 J. Chem. Phys. 148 12411
Google Scholar
[121] Mardt A, Pasquali L, Wu H, Noé F 2018 Nat. Commun. 9 5
Google Scholar
[122] Li W, Yoshii H, Hori N, Kameda T, Takada S 2010 Methods 52 106
Google Scholar
[123] Li W, Wang J, Zhang J, Wang W 2015 Curr. Opin. Struct. Biol. 30 25
Google Scholar
[124] Li G H 2023 Chemical Theory and Multiscale Simulation in Biomolecules: From Principles to Case Studies (1st Ed.) (Elsevier
[125] Meier J, Rao R, Verkuil R, Liu J, Sercu T, Rives A 2021 Language Models Enable Zero-shot Prediction of the Effects of Mutations on Protein Function (35th Conference on Neural Information Processing Systems (NeurIPS 2021)
[126] Wang D, Wang Y, Chang J, Zhang L, Wang H, E W 2021 Nat. Comput. Sci. 2 20
Google Scholar
[127] Huang Y P, Xia Y, Yang L, Wei J, Yang Y I, Gao Y Q 2022 Chin. J. Chem. 40 160
Google Scholar
-
图 3 基于粗粒化结构的蛋白残基溶剂可及性表面积(SASA)计算. 左图: 蛋白分子(protein G, PDB code:1pgb)的全原子结构图与粗粒化结构图; 右图: 使用DeepCGSA由粗粒化结构计算得到的SASA与参考值的对比. 其中参考值使用Shrake-Rupley算法由全原子结构计算得到[77]. DeepCGSA能够基于粗粒化结构给出接近参考值的SASA计算结果
Figure 3. SASA estimation based on coarse-grained protein structure. Left: All-atom structure and coarse-grained structure of protein G (PDB code: 1 pgb). Right: Correlation plot between the SASA values from DeepCGSA based on one-bead coarse-grained structure and the reference values by Shrake-Rupley algorithm based on all-atom structure. The DeepCGSA can well reproduce the SASA values based on coarse-grained structure.
图 4 用PCA (左)、t-SNE (中)和UMAP(右)对蛋白分子Protein G的基于粗粒化分子动力学的模拟轨迹[99] 降维效果对比. 蓝色到红色对应表征蛋白折叠程度的Q值; Q = 1 (红色)为完全折叠结构, Q = 0 (蓝色)为完全解折叠结构
Figure 4. Projection of the sampled snapshots of the coarse-grained molecular dynamics simulations for protein G [99] along the reaction coordinates constructed by PCA (left), t-SNE (middle), and UMAP (right), respectively. t-SNE and UMAP perform better than PCA in distinguishing the folded and unfolded structures. Colors from blue to red represent the structures with increasing folding extent: blue, fully unfolded; red, fully folded.
图 5 不同生成模型的网络架构. 从左至右分别对应变分自编码器、生成对抗网络与标准化流. 即便目标同为生成符合某种分布的数据, 三种网络使用了不同的架构与方法. 变分自编码器将数据降维至低维空间后, 在低维空间采样并再次变换至高维空间; 生成对抗网络则通过生成器与分类器之间的互相对抗而使生成器生成的结果符合目标分布; 标准化流则是在目标分布与简单易采样的分布 (如高斯分布) 之间建立直接且可逆的映射
Figure 5. Network architecture of different generative models: Variational autoencoder (VAE, left), generative adversarial network (GAN, middle), and normalizing flow (NF, right). Three networks have different architectures. VAE first reduces data to a low-dimensional space, samples in the low-dimensional space, and then transforms back to a high-dimensional space. GAN generates target distribution by combining a generator and the discriminator. Normalizing flow model establishes a direct and reversible mapping between the target distribution and a simple and easy-to-sample distribution (such as Gaussian distribution).
-
[1] McCammon J A, Gelin B R, Karplus M 1977 Nature 267 585
Google Scholar
[2] Schlick T, Portillo-Ledesma S 2021 Nat. Comput. Sci. 1 321
Google Scholar
[3] Vendruscolo M, Dobson C M 2011 Curr. Biol. 21 R68
Google Scholar
[4] Shaw D E, Maragakis P, Lindorff-Larsen K, et al. 2010 Science 330 341
Google Scholar
[5] Zhou C Y, Jiang F, Wu Y D 2015 J. Phys. Chem. B 119 1035
Google Scholar
[6] Zerze G H, Zheng W, Best R B, Mittal J 2019 J. Phys. Chem. Lett. 10 2227
Google Scholar
[7] Robustelli P, Piana S, Shaw D E 2018 Proc. Natl. Acad. Sci. U.S.A. 115 E4758
[8] Perilla J R, Schulten K 2017 Nat. Commun. 8 15959
Google Scholar
[9] Yu I, Mori T, Ando T, Harada R, Jung J, Sugita Y, Feig M 2016 eLife 5 e19274
Google Scholar
[10] 李文飞, 张建, 王骏, 王炜 2015 64 098701
Google Scholar
Li W F, Zhang J, Wang J, Wang W 2015 Acta Phys. Sin. 64 098701
Google Scholar
[11] Samuel A L 1959 IBM J. Res. Dev. 3 210
Google Scholar
[12] Stigler S M 1974 Hist. Math. 1 431
Google Scholar
[13] Fix E, Hodges J L 1951 Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties (Randolph Field, Texas: USAF School of Aviation Medicine) Tech. Rep. 4
[14] Breiman L, Friedman J H, Olshen R A, Stone C J 1984 Biometrics 40 874
Google Scholar
[15] Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533
Google Scholar
[16] Cortes C, Vapnik V 1995 Mach. Learn. 20 273
Google Scholar
[17] Ho T K 1995 Proceedings of 3rd International Conference on Document Analysis and Recognition Montreal, QC, Canada, August 14–16, 1995 p278
[18] Freund Y, Schapire R E 1996 Proceedings of the Thirteenth International Conference on International Conference on Machine Learning San Francisco, CA, USA, July 1996 p148
[19] Holley L, Karplus M 1989 Proc. Natl. Acad. Sci. U.S.A. 86 152
Google Scholar
[20] Cai Y, Liu X, Xu X, Zhou G 2001 BMC Bioinf. 2 1
Google Scholar
[21] Cai C, Wang W, Sun L, Chen Y 2003 Math. Biosci. 185 111
Google Scholar
[22] Zernov V V, Balakin K V, Ivaschenko A A, Savchuk N P, Pletnev I V 2003 J. Chem. Inf. Comput. Sci. 43 2048
Google Scholar
[23] Blank T B, Brown S D, Calhoun A W, Doren D J 1995 J. Chem. Phys. 103 4129
Google Scholar
[24] Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84
Google Scholar
[25] He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, June 27–30, 2016 p770
[26] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2020 Commun. ACM 63 139
Google Scholar
[27] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems New York, USA, December 4–9, 2017 p6000
[28] Noé F, Olsson S, Köhler J, Wu H 2019 Science 365 eaaw1147
Google Scholar
[29] Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D 2020 Proc. Natl. Acad. Sci. U.S.A. 117 1496
Google Scholar
[30] Jumper J, Evans R, Pritzel A, et al. 2021 Nature 596 583
Google Scholar
[31] Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee G R, Wang J, Cong Q, Kinch L N, Schaeffer R D, Millán C, Park H, Adams C, Glassman C R, DeGiovanni A, Pereira J H, Rodrigues A V, Van Dijk A A, Ebrecht A C, Opperman D J, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy M K, Dalwadi U, Yip C K, Burke J E, Garcia K C, Grishin N V, Adams P D, Read R J, Baker D 2021 Science 373 871
Google Scholar
[32] Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H 2022 Nature 602 523
Google Scholar
[33] Liu Y, Zhang L, Wang W, Zhu M, Wang C, Li F, Zhang J, Li H, Chen Q, Liu H 2022 Nat. Comput. Sci. 2 451
Google Scholar
[34] Köhler J, Chen Y, Krämer A, Clementi C, Noé F 2023 J. Chem. Theory Comput. 19 94216
Google Scholar
[35] Watson J L, Juergens D, Bennett N R, Trippe B L, Yim J, Eisenach H E, Ahern W, Borst A J, Ragotte R J, Milles L F, Wicky B I M, Hanikel N, Pellock S J, Courbet A, Sheffler W, Wang J, Venkatesh P, Sappington I, Torres S V, Lauko A, Bortoli V D, Mathieu E, Ovchinnikov S, Barzilay R, Jaakkola T S, DiMaio F, Baek M, Baker D 2023 Nature 620 1089
Google Scholar
[36] Kuhlman B, Bradley P 2019 Nat. Rev. Mol. Cell Biol. 20 681
Google Scholar
[37] Jisna V, Jayaraj P 2021 Protein J. 40 522
Google Scholar
[38] AlQuraishi M 2021 Curr. Opin. Chem. Biol. 65 1
Google Scholar
[39] Xu Y, Verma D, Sheridan R P, Liaw A, Ma J, Marshall N M, McIntosh J, Sherer E C, Svetnik V, Johnston J M 2020 J. Chem. Inf. Model. 60 2773
Google Scholar
[40] Huang B, Du Y, Zhang S, Li W, Wang J, Zhang J 2020 Chin. Phys. B 29 108704
Google Scholar
[41] Zhang J, Chen D, Xia Y, et al. 2023 J. Chem. Theory Comput. 19 4338
Google Scholar
[42] Ramanathan A, Ma H, Parvatikar A, Chennubhotla S C 2021 Curr. Opin. Struct. Biol. 66 216
Google Scholar
[43] Noé F, Tkatchenko A, Müller K R, Clementi C 2020 Annu. Rev. Phys. Chem. 71 361
Google Scholar
[44] Wang Y, Ribeiro J M L, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139
Google Scholar
[45] Sambasivarao S V, Acevedo O 2009 J. Chem. Theory Comput. 5 1038
Google Scholar
[46] Brooks B R, Brooks Ⅲ C L, Mackerell Jr. A D, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor B, Venable R M, Woodcock H L, Wu X, Yang W, York D M, Karplus M 2009 J. Comput. Chem. 30 1545
Google Scholar
[47] Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A 2004 J. Comput. Chem. 25 528
Google Scholar
[48] Peng X, Zhang Y, Chu H, Li Y, Zhang D, Cao L, Li G 2016 J. Chem. Theory Comput. 12 2973
Google Scholar
[49] Liu C, Qi R, Wang Q, Piquemal J P, Ren P 2017 J. Chem. Theory Comput. 13 2751
Google Scholar
[50] Schütt K T, Kindermans P J, Sauceda H E, Chmiela S, Tkatchenko A, Müller K R 2017 Proceedings of the 31st International Conference on Neural Information Processing Systems New York, USA, December 4–9, 2017 p992
[51] Zhang L, Han J, Wang H, Car R, Weinan E 2018 Phys. Rev. Lett. 120 143001
Google Scholar
[52] Zhang L, Han J, Wang H, Car R, Weinan E 2018 J. Chem. Phys. 149 034101
Google Scholar
[53] Park C W, Kornbluth M, Vandermause J, Wolverton C, Kozinsky B, Mailoa J P 2021 npj Comput. Mater. 7 73
Google Scholar
[54] batznerzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B 2022 Nat. Commun. 13 2453
Google Scholar
[55] Wang Y, Li S, He X, Li M, Wang Z, Zheng N, Shao B, Wang T, Liu T Y 2022 arXiv: 2210.16518 [cs.LG
[56] Zhang L F, Han J Q, Wang H, Saidi W, Car R, E W H 2018 Advances in Neural Information Processing Systems Montreal, Canada, Decembe 3–8, 2018 p4441
[57] Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401
Google Scholar
[58] Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135
Google Scholar
[59] Smith J S, Isayev O, Roitberg A E 2017 Chem. Sci. 8 3192
Google Scholar
[60] Fan Z, Wang Y, Ying P, et al. 2022 J. Chem. Phys. 157 114801
Google Scholar
[61] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T, Müller K R 2017 Sci. Adv. 3 e1603015
Google Scholar
[62] Gilmer N M P, Schoenholz S S, Riley P F, Vinyals O, Dahl G E 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6–11, 2017 p1263
[63] Wang X, Xu Y, Zheng H, Yu K 2021 J. Phys. Chem. Lett. 12 7982
Google Scholar
[64] Takada S, Kanada R, Tan C, Terakawa T, Li W, Kenzaki H 2015 Acc. Chem. Res. 48 3026
Google Scholar
[65] Reith D, Pütz M, Müller-Plathe F 2003 J. Comput. Chem. 24 1624
Google Scholar
[66] Izvekov S, Voth G A 2005 J. Phys. Chem. B 109 2469
Google Scholar
[67] Chu J W, Ayton G, Izvekov S, Voth G 2007 Mol. Phys. 105 167
Google Scholar
[68] Li W, Wolynes P G, Takada S 2011 Proc. Natl. Acad. Sci. U.S.A. 108 3504
Google Scholar
[69] Gohlke H, Kiel C, Case D A 2003 J. Mol. Biol. 330 891
Google Scholar
[70] Wang J, Olsson S, Wehmeyer C, Pérez A, Charron N E, De Fabritiis G, Noé F, Clementi C 2019 ACS Cent. Sci. 5 755
Google Scholar
[71] Arts M, Satorras V G, Huang C W, Zuegner D, Federici M, Clementi C, Noé F, Pinsler R, van den Berg R 2023 arXiv: 2302.00600 [cs.LG
[72] Wang W, Gómez-Bombarelli R 2019 Npj Comput. Mater. 5 125
Google Scholar
[73] Zhang J, Lei Y K, Yang Y I, Gao Y Q 2020 J. Chem. Phys. 153 174115
Google Scholar
[74] Dong T, Gong T, Li W 2021 J. Phys. Chem. B 125 9490
Google Scholar
[75] Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812
Google Scholar
[76] Souza P C T, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks B M H, Wassenaar T A, Kroon P C, Melcr J, Nieto V, Corradi V, Khan H M, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best R B, Vattulainen I, Monticelli L, Periole1 X, Tieleman D P, de Vries A H, Marrink S J 2021 Nat. Methods 18 382
Google Scholar
[77] Shrake A, Rupley J A 1973 J. Mol. Biol. 79 351
Google Scholar
[78] Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187
Google Scholar
[79] Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141
Google Scholar
[80] Laio A, Parrinello M 2002 Proc. Natl. Acad. Sci. U.S.A. 99 12562
Google Scholar
[81] Hamelberg D, Mongan J, McCammon J A 2004 J. Chem. Phys. 120 11919
Google Scholar
[82] Yang L, Liu C W, Shao Q, Zhang J, Gao Y Q 2015 Acc. Chem. Res. 48 947
Google Scholar
[83] Tribello G A, Bonomi M, Branduardi D, Camilloni C, Bussi G 2014 Comput. Phys. Commun. 185 604
Google Scholar
[84] E W, Ren W, Vanden-Eijnden E 2002 Phys. Rev. B 66 052301
[85] Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964
Google Scholar
[86] Chen C, Huang Y, Xiao Y 2013 J. Biomol. Struct. Dyn. 31 206
Google Scholar
[87] Zhang J, Gong H 2020 J. Chem. Theory Comput. 16 4813
Google Scholar
[88] Zhu W, Zhang J, Wang J, Li W, Wang W 2021 Phys. Rev. E 103 032404
Google Scholar
[89] Zheng S, He J, Liu C, et al. 2023 arXiv: 2306.05445 [physics.chem-ph
[90] Schneider E, Dai L, Topper R Q, Drechsel-Grau C, Tuckerman M E 2017 Phys. Rev. Lett. 119 150601
Google Scholar
[91] Jolliffe I T 2002 Principal Component Analysis for Special Types of Data (New York: Springer) pp338–372
[92] Tenenbaum J B, de Silva V, Langford J C 2000 Science 290 2319
Google Scholar
[93] Lafon S, Lee A B 2006 IEEE Trans. Pattern Anal. Mach. Intell. 28 1393
Google Scholar
[94] Das P, Moll M, Stamati H, Kavraki L E, Clementi C 2006 Proc. Natl. Acad. Sci. U.S.A. 103 9885
Google Scholar
[95] Plaku E, Stamati H, Clementi C, Kavraki L E 2007 Proteins Struct. Funct. Bioinf. 67 897
Google Scholar
[96] Trstanova Z, Leimkuhler B, Lelièvre T 2020 Proc. R. Soc. A 476 20190036
Google Scholar
[97] van der Maaten L, Hinton G 2008 J. Mach. Learn. Res. 9 2579
[98] Hinton G, Roweis S 2002 Proceedings of the 15th International Conference on Neural Information Processing Systems Vancouver, British Columbia, Canada, December 9–14, 2002 p857
[99] Li W, Terakawa T, Wang W, Takada S 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17789
Google Scholar
[100] Rydzewski J, Nowak W 2016 J. Chem. Theory Comput. 12 2110
Google Scholar
[101] Zhou H, Wang F, Tao P 2018 J. Chem. Theory Comput. 14 5499
Google Scholar
[102] Spiwok V, Kříž P 2020 Front. Mol. Biosci. 7 132
Google Scholar
[103] Roweis S T, Saul L K 2000 Science 290 2323
Google Scholar
[104] Belkin M, Niyogi P 2001 Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic Vancouver, British Columbia, Canada, December 3–8, 2001 p585
[105] Donoho D L, Grimes C 2003 Proc. Natl. Acad. Sci. U.S.A. 100 5591
Google Scholar
[106] McInnes L, Healy J, Melville J 2018 arXiv: 1802.03426 [stat.ML
[107] Chen S, Lake B B, Zhang K 2019 Nat. Biotechnol. 37 1452
Google Scholar
[108] Mimitou E P, Lareau C A, Chen K Y, et al 2021 Nat. Biotechnol. 39 1246
Google Scholar
[109] Becht E, McInnes L, Healy J, Dutertre C A, Kwok I W, Ng L G, Ginhoux F, Newell E W 2019 Nat. Biotechnol. 37 38
Google Scholar
[110] Trozzi F, Wang X, Tao P 2021 J. Phys. Chem. B 125 5022
Google Scholar
[111] Do V H, Canzar S 2021 Genome Biol. 22 130
Google Scholar
[112] Kingma D P, Welling M 2013 arXiv:1312.6114 [stat.ML
[113] Ramaswamy V K, Musson S C, Willcocks C G, Degiacomi M T 2021 Phys. Rev. X 11 011052
Google Scholar
[114] Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobatznero J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A 2018 ACS Cent. Sci. 4 268
Google Scholar
[115] Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603
Google Scholar
[116] Bonati L, Zhang Y Y, Parrinello M 2019 Proc. Natl. Acad. Sci. U.S.A. 116 17641
Google Scholar
[117] Zhang J, Yang Y I, Noé F 2019 J. Phys. Chem. Lett. 10 5791
Google Scholar
[118] Rezende D J, Mohamed S 2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning 37 1530
[119] Shamsi Z, Cheng K J, Shukla D 2018 J. Phys. Chem. B 122 8386
Google Scholar
[120] Zhang L, Wang H, E W 2018 J. Chem. Phys. 148 12411
Google Scholar
[121] Mardt A, Pasquali L, Wu H, Noé F 2018 Nat. Commun. 9 5
Google Scholar
[122] Li W, Yoshii H, Hori N, Kameda T, Takada S 2010 Methods 52 106
Google Scholar
[123] Li W, Wang J, Zhang J, Wang W 2015 Curr. Opin. Struct. Biol. 30 25
Google Scholar
[124] Li G H 2023 Chemical Theory and Multiscale Simulation in Biomolecules: From Principles to Case Studies (1st Ed.) (Elsevier
[125] Meier J, Rao R, Verkuil R, Liu J, Sercu T, Rives A 2021 Language Models Enable Zero-shot Prediction of the Effects of Mutations on Protein Function (35th Conference on Neural Information Processing Systems (NeurIPS 2021)
[126] Wang D, Wang Y, Chang J, Zhang L, Wang H, E W 2021 Nat. Comput. Sci. 2 20
Google Scholar
[127] Huang Y P, Xia Y, Yang L, Wei J, Yang Y I, Gao Y Q 2022 Chin. J. Chem. 40 160
Google Scholar
Catalog
Metrics
- Abstract views: 4487
- PDF Downloads: 218
- Cited By: 0