-
Understanding the phase stability and transformation kinetics of multi-principal element alloys (MPEAs) under extreme conditions is critical for optimizing their performance in extreme conditions such as high temperature and high pressure environment. This study investigates the high pressure-temperature (p-T) phase diagram and solid-liquid transition mechanisms of an equiatomic NiCoCr alloy based on embedded atom method (EAM) potential, through advanced molecular dynamics (MD) simulations combined with enhanced sampling techniques. To overcome the timescale limitations of the conventional MD in capturing phase transitions as rare events, we employed a hybrid approach integrating well-tempered metadynamics (WTMetaD) and the on-the-fly probability-enhanced sampling with expanded ensembles. Collective variables such as enthalpy per atom SH, and two-body entropy SS were used to explore the polymorphic states of the NiCoCr alloy. The crystallinity senv, potential energy U, volume V were utilized to drive phase transitions, sampled configurations across 1550–1750 K and 0–10 GPa using multithermal-multibaric-multiumbrella simulations.
-
Keywords:
- multi-principal elemental alloys /
- enhanced sampling /
- free energy /
- phase diagram /
- phase transition
-
[1] Peng J, Chen B, Wang Z, Guo J, Wu B, Hao S, Zhang Q, Gu L, Zhou Q, Liu Z, Hong S, You S, Fu A, Shi Z, Xie H, Cao D, Lin C J, Fu G, Zheng L S, Jiang Y, Zheng N 2020Nature 586 390
[2] Du J, Jiang S, Cao P, Xu C, Wu Y, Chen H, Fu E, Lu Z 2023Nat. Mater. 22 442
[3] Bai X, Xie H, Zhang X, Zhao D, Rong X, Jin S, Liu E, Zhao N, He C 2024Nat. Mater. 23 747
[4] George E P, Curtin W A, Tasan C C 2020Acta Mater. 188 435
[5] Ma E, Wu X 2019Nat. Commun. 10 5623
[6] George E P, Raabe D, Ritchie R O 2019Nat. Rev. Mater. 4 515
[7] Yeh J ‐W., Chen S ‐K., Lin S ‐J., Gan J ‐Y., Chin T ‐S., Shun T ‐T., Tsau C ‐H., Chang S ‐Y. 2004Adv. Eng. Mater. 6 299
[8] Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024Nat. Rev. Chem. 8 471
[9] Wang M, Ma Z L, Xu Z Q, Cheng X W 2021Scr. Mater. 191 131
[10] Kumar N A P K, Li C, Leonard K J, Bei H, Zinkle S J 2016Acta Mater. 113 230
[11] Zhao S, He L xin, Fan X xia, Liu C hai, Long J ping, Wang L, Chang H, Wang J, Zhang W 2019SURF COAT TECH 375 215
[12] Wu Z, Bei H, Pharr G M, George E P 2014Acta Mater. 81 428
[13] Gludovatz B, Hohenwarter A, Thurston K V S, Bei H, Wu Z, George E P, Ritchie R O 2016Nat. Commun 7 10602
[14] Ding J, Yu Q, Asta M, Ritchie R O 2018Proc. Natl. Acad. Sci. U.S.A. 115 8919
[15] Smith T M, Kantzos C A, Zarkevich N A, Harder B J, Heczko M, Gradl P R, Thompson A C, Mills M J, Gabb T P, Lawson J W 2023Nature 617 513
[16] Panagiotopoulos A Z, Quirke N, Stapleton M, Tildesley D J 1988Mol. Phys. 63 527
[17] Frenkel D, Ladd A J C 1984J. Chem. Phys 81 3188
[18] Grochola G 2004J. Chem. Phys 120 2122
[19] Zhang L, Wang H, Car R, E W 2021Phys. Rev. Lett. 126 236001
[20] Kruglov I A, Yanilkin A, Oganov A R, Korotaev P 2019Phys. Rev. B 100 174104
[21] Chen T, Yuan F, Liu J, Geng H, Zhang L, Wang H, Chen M 2023Phys. Rev. Mater. 7 053603
[22] Pártay L B, Bartók A P, Csányi G 2010J. Phys. Chem. B 114 10502
[23] Dorrell J, Pártay L B 2020J. Phys. Chem. B 124 6015
[24] Marchant G A, Caro M A, Karasulu B, Pártay L B 2023npj Comput. Mater. 9 131
[25] Unglert N, Carrete J, Pártay L B, Madsen G K H 2023Phys. Rev. Mater. 7 123804
[26] Laio A, Parrinello M 2002Proc. Natl. Acad. Sci. U.S.A. 99 12562
[27] Barducci A, Bussi G, Parrinello M 2008Phys. Rev. Lett. 100 020603
[28] Valsson O, Parrinello M 2014Phys. Rev. Lett. 113 090601
[29] Dama J F, Rotskoff G, Parrinello M, Voth G A 2014J. Chem. Theory Comput. 10 3626
[30] Piaggi P M, Parrinello M 2019Phys. Rev. Lett. 122 050601
[31] Piaggi P M, Parrinello M 2019J. Chem. Phys 150 244119
[32] Piaggi P M, Valsson O, Parrinello M 2017Phys. Rev. Lett. 119 015701
[33] Invernizzi M, Valsson O, Parrinello M 2017Proc. Natl. Acad. Sci. U.S.A. 114 3370
[34] Piaggi P M, Parrinello M 2018Proc. Natl. Acad. Sci. U.S.A. 115 10251
[35] Oganov A R, Pickard C J, Zhu Q, Needs R J 2019Nat. Rev. Mater. 4 331
[36] Niu H, Bonati L, Piaggi P M, Parrinello M 2020Nat. Commun. 11 2654
[37] Invernizzi M, Piaggi P M, Parrinello M 2020Phys. Rev. X 10 041034
[38] Tribello G A, Bonomi M, Branduardi D, Camilloni C, Bussi G 2014Comput. Phys. Commun. 185 604
[39] Li Q J, Sheng H, Ma E 2019Nat. Commun. 10 3563
[40] Dai S C, Yang Y, Wang Y J 2024Phys. Rev. Mater. 8 033607
[41] Cao F H, Wang Y J, Dai L H 2020Acta Mater 194 283
[42] Bussi G, Donadio D, Parrinello M 2007J. Chem. Phys 126 014101
[43] Parrinello M, Rahman A 1981J. Appl. Phys. 52 7182
[44] Flyvbjerg H, Petersen H G 1989J. Chem. Phys 91 461
[45] Rein Ten Wolde P, Ruiz-Montero M J, Frenkel D 1996J. Chem. Phys 104 9932
[46] Du J P, Yu P, Shinzato S, Meng F S, Sato Y, Li Y, Fan Y, Ogata S 2022Acta Mater. 240 118314
[47] Oganov A R, Glass C W 2006J. Chem. Phys 124 244704
[48] Gusev V V, Adamson D, Deligkas A, Antypov D, Collins C M, Krysta P, Potapov I, Darling G R, Dyer M S, Spirakis P, Rosseinsky M J 2023Nature 619 68
Metrics
- Abstract views: 58
- PDF Downloads: 0
- Cited By: 0