Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of Ga content gradient in Cu(In,Ga)Se2 solar cells through machine learning and device simulation

Liu Wu Zhu Cheng-Wan Li Hao-Tian Zhao Su-Ling Qiao Bo Xu Zheng Song Dan-Dan

Citation:

Optimization of Ga content gradient in Cu(In,Ga)Se2 solar cells through machine learning and device simulation

Liu Wu, Zhu Cheng-Wan, Li Hao-Tian, Zhao Su-Ling, Qiao Bo, Xu Zheng, Song Dan-Dan
PDF
HTML
Get Citation
  • Cu(In,Ga)Se2 (CIGS) solar cell is a kind of highly efficient thin film solar cell, for which Ga ratio (Ga/(Ga+In), GGI) gradient engineering is an efficient approach to achieving high open circuit voltage under no short circuit current loss. In this work, we firstly evaluate the room and the strategies for improving the device performance of the CIGS solar cells based on the comparison among their theoretical efficiency limits. Then we investigate the different schemes of “V” type GGI gradient and their effects on device performance through machine learning and device simulation. Based on these studies, we optimize the scheme of “V” type GGI gradient and obtain a high efficiency of 26% from device simulation. The carrier kinetics for the effect of modifying GGI gradient on device performance are analyzed. This work provides an approach to optimizing the GGI gradient to obtain highly efficient CIGS solar cells, which is referable for experimental optimization.
      Corresponding author: Song Dan-Dan, ddsong@bjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500200).
    [1]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [2]

    Belghachi A, Limam N 2017 Chin. J. Phys. 55 1127Google Scholar

    [3]

    Peace B, Claypoole J, Sun N, Dwyer D, Eisaman M D, Haldar P, Efstathiadis H 2016 J. Alloys Compd. 657 873Google Scholar

    [4]

    Lim D, Kim M Y, Song W 2016 Sci. Adv. Mater. 8 558Google Scholar

    [5]

    Jackson P, Hariskos D, Wuerz R, et al. 2015 Phys. Status Solidi RRL 9 28Google Scholar

    [6]

    Aissani H, Helmaoui A, Moughli H 2017 Int. J. Appl. Eng. Res. 12 227

    [7]

    Saadat M, Moradi M, Zahedifar M 2016 Superlattices. Microstruct. 92 303Google Scholar

    [8]

    Majeed N, Saladina M, Krompiec M, Greedy S, Deibel C, MacKenzie R C I 2020 Adv. Funct. Mater. 30 1907259Google Scholar

    [9]

    Buratti Y, Le Gia Q T, Dick J, Zhu Y, Hameiri Z 2020 NPJ Comput. Mater. 6 1Google Scholar

    [10]

    Zhu C W, Liu W, Li Y Y, et al. 2021 Sol. Energy 228 45

    [11]

    Kato T, Wu J L, Hirai Y, Sugimoto H, Bermudez V 2018 IEEE J. Photovoltaics 9 325

    [12]

    Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M 2016 Phys. Status Solidi RRL 10 583Google Scholar

    [13]

    Tai K F, Kamada R, Yagioka T, Kato T, Sugimoto H 2017 Jpn. J. Appl. Phys. 56 08MC03Google Scholar

    [14]

    Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X 2021 Prog. Photovoltaics Res. Appl. 29 3Google Scholar

    [15]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 1

    [16]

    Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energy Mater. Sol. Cells 186 184Google Scholar

    [17]

    Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G, Seo J 2021 Nature 590 587Google Scholar

    [18]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [19]

    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovoltaics Res. Appl. 27 565Google Scholar

    [20]

    Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovoltaics Res. Appl. 27 3Google Scholar

    [21]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [22]

    Nayak P K, Cahen D 2014 Adv. Mater. 26 1622Google Scholar

    [23]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovoltaics Res. Appl. 19 894Google Scholar

    [24]

    Liu Y, Li B, Lin S, Liu W, Adam J, Madsen M, Rubahn H G, Sun Y 2018 J. Phys. Chem. Solids 120 190Google Scholar

    [25]

    Saadat M, Moradi M, Zahedifar M 2016 J. Mater. Sci. -Mater. Electron. 27 1130Google Scholar

    [26]

    Ji S, Hayakawa T, Suyama N, Nakada K, Yamada A 2020 Jpn. J. Appl. Phys. 59 041003Google Scholar

    [27]

    刘芳芳, 孙云, 何青 2014 63 047201Google Scholar

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201Google Scholar

  • 图 1  CIGS吸收层带隙梯度变化

    Figure 1.  Band gap gradient change of CIGS absorber layer.

    图 2  实验与模拟得到的CIGS太阳能电池J-V特性

    Figure 2.  J-V characteristic of experimental data and simulation result for the CIGS solar cell.

    图 3  (a) CIGS电池器件结构; (b) CIGS层中GGI梯度示意图

    Figure 3.  (a) Device structure of the CIGS solar cells; (b) schematic illustration of GGI gradient in CIGS.

    图 4  RF算法预测的电池效率随GGIF/GGIM/GGIB变化的曲线

    Figure 4.  Changes of predicted efficiency by RF algorithm with GGIF/GGIM/GGIB.

    图 5  RF算法预测的不同GGI值情况下的器件效率

    Figure 5.  Device efficiency predicted by RF algorithm under different GGI values.

    图 6  RF算法预测的不同GGI梯度的器件性能. 其中, 0代表实验效率为23.35%的电池所采用的GGI梯度, 模型1—模型6为预测效率最高的6组器件的GGI梯度

    Figure 6.  Predicted device performance of the CIGS solar cells based on different GGI gradients by RF algorithm. 0 represents for the GGI gradient used in the device with 23.35% experimental efficiency, while 1–6 are the GGI gradients of the devices with the highest predicted efficiency.

    图 7  器件模拟采用的14种“V”型双梯度模型 (a) GGIF = 0.4; (b) GGIF = 0.5; (c) GGIF = 0.6

    Figure 7.  14 types of “V”-shaped double GGI gradient schemes used in the device simulation: (a) GGIF = 0.4; (b) GGIF = 0.5; (c) GGIF = 0.6.

    图 8  器件模拟得到的不同GGI梯度模型的器件性能

    Figure 8.  Device performance of the CIGS solar cells based on different GGI gradient schemes obtained by device simulation.

    图 9  器件模拟得到的CIGS电池不同位置载流子复合速率 (a) 前表面; (b) 电池内部; (c) 后表面. R为复合速率, 单位cm–3·s–1

    Figure 9.  Carrier recombination rate at different positions of CIGS solar cells obtained by device simulation: (a) Front surface; (b) interior; (c) rear surface. Here, R is the recombination rate, which unit is cm–3·s–1.

    图 10  器件模拟得到的CIGS薄膜背电场强度

    Figure 10.  Back electric field intensity of CIGS film obtained by device simulation.

    表 1  CIGS, c-Si, 钙钛矿三种电池的光伏特性参数、S-Q极限值及差值分析. Eg, PCE/VOC/JSC/FF, JSQ, WOC分别代表材料的带隙、电池的转换效率/开路电压/短路电流密度/填充因子、SQ极限计算的短路电流密度、VOC损失

    Table 1.  Photovoltaic parameters, S-Q limit value and difference analysis of CIGS, c-Si, and perovskite solar cells. Here, Eg, PCE/VOC/JSC/FF, JSQ, WOC respectively represent the band gap of the absorption material, the photoelectric conversion efficiency/open circuit voltage/short-circuit current density/fill factor of the solar cells, the short-circuit current density calculated by the SQ limit, and the VOC loss.

    Cell typeEth/eVPCE/%VOC/mVJSC/(mA·cm–2)FF/%JSQ/(mA·cm–2)WOC/mVJSC/JSQ/%机构参考文献
    CIGS1.08823.35734.039.5880.444.0354.089.95SF[1]
    CIGS1.13022.92746.038.5079.743.0384.089.53SF[11]
    CIGS1.14322.60741.037.8080.642.3402.089.36ZSW[12]
    CIGS1.11022.30722.039.4078.243.7388.090.16SF[13]
    c-Si1.12026.70738.042.6584.943.3382.098.50Kaneka[14]
    c-Si1.12026.60740.342.5084.743.3379.798.15Kaneka[14]
    c-Si1.12026.30744.042.3083.843.3376.097.69Kaneka[15]
    c-Si1.12026.10726.642.6284.343.3393.498.43ISFH[16]
    钙钛矿1.55025.201180.525.1484.827.1369.592.77KRICT[17]
    钙钛矿1.48024.641181.426.1879.629.5298.683.53UNIST[18]
    钙钛矿1.57424.201194.824.1684.026.2379.292.21KRICT[19]
    钙钛矿1.53623.701169.725.4079.827.6366.392.03ISCAS[20]
    DownLoad: CSV

    表 2  器件模拟中使用的参数设置

    Table 2.  Parameter settings used in device simulation.

    B:ZnOZn(Mg, O)Zn(O, S, OH)xCIGS
    Thickness/nm5005081000
    Permittivity/1910913.6
    Eg/eV3.33.63.61.06—1.66
    Affinity/eV4.44.24.23.89—4.49
    Nc/(1018 cm–3)2.22.22.22.2
    Nv/(1019 cm–3)1.81.81.81.8
    µn/(cm2·V–1·s–1)100100100100
    µp/(cm2·V–1·s–1)25252525
    Nd/(1017 cm–3)101010
    Na/(1016 cm–3)0002
    DownLoad: CSV

    表 3  不同位置GGI与光伏参数之间的相关性

    Table 3.  Correlation between GGI value at different location and photovoltaic parameters.

    GGIFGGIMGGIB
    VOC0.380.350.34
    JSC–0.26–0.41–0.12
    DownLoad: CSV

    表 4  wxAMPS器件模拟所用的GGI梯度模型

    Table 4.  Schemes of GGI gradient used for wxAMPS device simulation.

    模型1234567
    GGIF0.400.400.400.400.400.400.50
    GGIM0.100.150.200.250.300.350.10
    GGIB0.840.770.710.650.580.520.80
    模型891011121314
    GGIF0.500.500.500.600.600.600.60
    GGIM0.200.300.400.100.200.300.40
    GGIB0.670.540.420.760.630.500.44
    DownLoad: CSV
    Baidu
  • [1]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 9 1863Google Scholar

    [2]

    Belghachi A, Limam N 2017 Chin. J. Phys. 55 1127Google Scholar

    [3]

    Peace B, Claypoole J, Sun N, Dwyer D, Eisaman M D, Haldar P, Efstathiadis H 2016 J. Alloys Compd. 657 873Google Scholar

    [4]

    Lim D, Kim M Y, Song W 2016 Sci. Adv. Mater. 8 558Google Scholar

    [5]

    Jackson P, Hariskos D, Wuerz R, et al. 2015 Phys. Status Solidi RRL 9 28Google Scholar

    [6]

    Aissani H, Helmaoui A, Moughli H 2017 Int. J. Appl. Eng. Res. 12 227

    [7]

    Saadat M, Moradi M, Zahedifar M 2016 Superlattices. Microstruct. 92 303Google Scholar

    [8]

    Majeed N, Saladina M, Krompiec M, Greedy S, Deibel C, MacKenzie R C I 2020 Adv. Funct. Mater. 30 1907259Google Scholar

    [9]

    Buratti Y, Le Gia Q T, Dick J, Zhu Y, Hameiri Z 2020 NPJ Comput. Mater. 6 1Google Scholar

    [10]

    Zhu C W, Liu W, Li Y Y, et al. 2021 Sol. Energy 228 45

    [11]

    Kato T, Wu J L, Hirai Y, Sugimoto H, Bermudez V 2018 IEEE J. Photovoltaics 9 325

    [12]

    Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M 2016 Phys. Status Solidi RRL 10 583Google Scholar

    [13]

    Tai K F, Kamada R, Yagioka T, Kato T, Sugimoto H 2017 Jpn. J. Appl. Phys. 56 08MC03Google Scholar

    [14]

    Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X 2021 Prog. Photovoltaics Res. Appl. 29 3Google Scholar

    [15]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 1

    [16]

    Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energy Mater. Sol. Cells 186 184Google Scholar

    [17]

    Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G, Seo J 2021 Nature 590 587Google Scholar

    [18]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [19]

    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovoltaics Res. Appl. 27 565Google Scholar

    [20]

    Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovoltaics Res. Appl. 27 3Google Scholar

    [21]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [22]

    Nayak P K, Cahen D 2014 Adv. Mater. 26 1622Google Scholar

    [23]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovoltaics Res. Appl. 19 894Google Scholar

    [24]

    Liu Y, Li B, Lin S, Liu W, Adam J, Madsen M, Rubahn H G, Sun Y 2018 J. Phys. Chem. Solids 120 190Google Scholar

    [25]

    Saadat M, Moradi M, Zahedifar M 2016 J. Mater. Sci. -Mater. Electron. 27 1130Google Scholar

    [26]

    Ji S, Hayakawa T, Suyama N, Nakada K, Yamada A 2020 Jpn. J. Appl. Phys. 59 041003Google Scholar

    [27]

    刘芳芳, 孙云, 何青 2014 63 047201Google Scholar

    Liu F F, Sun Y, He Q 2014 Acta Phys. Sin. 63 047201Google Scholar

  • [1] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan. Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [4] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [5] Feng Nai-Xing, Wang Huan, Zhu Zi-Xian, Dong Chun-Zhi, Li Hong-Yang, Zhang Yu-Xian, Yang Li-Xia, Huang Zhi-Xiang. Intelligent algorithm of extreme gradient boosting based perfectly matched monolayer and its efficient absorption on airborne transient electromagnetics problems. Acta Physica Sinica, 2024, 73(6): 065201. doi: 10.7498/aps.73.20231724
    [6] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [7] Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na. Application and prospect of machine learning in photoelectron spectroscopy. Acta Physica Sinica, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [8] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [9] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [10] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [11] Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo. Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [12] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [13] Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia. Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [14] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [15] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [16] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [17] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [18] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [19] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [20] Liu Fang-Fang, Sun Yun, He Qing. Influences of Ga gradient distribution on Cu(In, Ga)Se2 film. Acta Physica Sinica, 2014, 63(4): 047201. doi: 10.7498/aps.63.047201
Metrics
  • Abstract views:  4981
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2021
  • Accepted Date:  31 July 2021
  • Available Online:  20 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回
Baidu
map