搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍钴铬多主元合金高温高压相图与相变动力学模拟

熊浩智 王云江

引用本文:
Citation:

镍钴铬多主元合金高温高压相图与相变动力学模拟

熊浩智, 王云江

Simulating phase diagram and phase transition of NiCoCr multi-principal element alloy at high temperature and high pressure

Xiong Hao-Zhi, Wang Yun-Jiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 多主元合金概念的提出颠覆了传统物理冶金的理念,极大地拓展了材料设计空间。合金相图从热力学角度揭示成分、热力学与结构之间的关系,对指导材料优化具有重要意义。传统实验方法测定相图费时耗力,且面临着测量条件、成分控制、高温高压等因素限制,系统评估相图和热力学性质困难。在此工作中,我们以典型等原子比镍钴铬合金为原型材料,采用元动力学、动态概率增强采样和扩展系综模拟相结合的方法,克服原子尺度模拟的时间尺度限制,系统绘制了镍钴铬在高温、高压条件下的温度-压力相图,并计算了不同热力学条件下该材料体心立方晶体与液体相变的自由能面。基于自由能路径,量化了晶化和熔化相变过程中,激活能、激活体积、激活熵与温度、压力的关系,从而揭示了压力和温度分别通过影响激活体积和激活熵,进而影响熔化和晶化动力学的物理机制。该研究为理解多主元合金的热力学与相变动力学提供了理论支持,探索了其在极端条件下结构稳定性。
    Understanding the phase stability and transformation kinetics of multi-principal element alloys (MPEAs) under extreme conditions is critical for optimizing their performance in extreme conditions such as high temperature and high pressure environment. This study investigates the high pressure-temperature (p-T) phase diagram and solid-liquid transition mechanisms of an equiatomic NiCoCr alloy based on embedded atom method (EAM) potential, through advanced molecular dynamics (MD) simulations combined with enhanced sampling techniques. To overcome the timescale limitations of the conventional MD in capturing phase transitions as rare events, we employed a hybrid approach integrating well-tempered metadynamics (WTMetaD) and the on-the-fly probability-enhanced sampling with expanded ensembles. Collective variables such as enthalpy per atom SH, and two-body entropy SS were used to explore the polymorphic states of the NiCoCr alloy. The crystallinity senv, potential energy U, volume V were utilized to drive phase transitions, sampled configurations across 1550–1750 K and 0–10 GPa using multithermal-multibaric-multiumbrella simulations.
  • [1]

    Peng J, Chen B, Wang Z, Guo J, Wu B, Hao S, Zhang Q, Gu L, Zhou Q, Liu Z, Hong S, You S, Fu A, Shi Z, Xie H, Cao D, Lin C J, Fu G, Zheng L S, Jiang Y, Zheng N 2020Nature 586 390

    [2]

    Du J, Jiang S, Cao P, Xu C, Wu Y, Chen H, Fu E, Lu Z 2023Nat. Mater. 22 442

    [3]

    Bai X, Xie H, Zhang X, Zhao D, Rong X, Jin S, Liu E, Zhao N, He C 2024Nat. Mater. 23 747

    [4]

    George E P, Curtin W A, Tasan C C 2020Acta Mater. 188 435

    [5]

    Ma E, Wu X 2019Nat. Commun. 10 5623

    [6]

    George E P, Raabe D, Ritchie R O 2019Nat. Rev. Mater. 4 515

    [7]

    Yeh J ‐W., Chen S ‐K., Lin S ‐J., Gan J ‐Y., Chin T ‐S., Shun T ‐T., Tsau C ‐H., Chang S ‐Y. 2004Adv. Eng. Mater. 6 299

    [8]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024Nat. Rev. Chem. 8 471

    [9]

    Wang M, Ma Z L, Xu Z Q, Cheng X W 2021Scr. Mater. 191 131

    [10]

    Kumar N A P K, Li C, Leonard K J, Bei H, Zinkle S J 2016Acta Mater. 113 230

    [11]

    Zhao S, He L xin, Fan X xia, Liu C hai, Long J ping, Wang L, Chang H, Wang J, Zhang W 2019SURF COAT TECH 375 215

    [12]

    Wu Z, Bei H, Pharr G M, George E P 2014Acta Mater. 81 428

    [13]

    Gludovatz B, Hohenwarter A, Thurston K V S, Bei H, Wu Z, George E P, Ritchie R O 2016Nat. Commun 7 10602

    [14]

    Ding J, Yu Q, Asta M, Ritchie R O 2018Proc. Natl. Acad. Sci. U.S.A. 115 8919

    [15]

    Smith T M, Kantzos C A, Zarkevich N A, Harder B J, Heczko M, Gradl P R, Thompson A C, Mills M J, Gabb T P, Lawson J W 2023Nature 617 513

    [16]

    Panagiotopoulos A Z, Quirke N, Stapleton M, Tildesley D J 1988Mol. Phys. 63 527

    [17]

    Frenkel D, Ladd A J C 1984J. Chem. Phys 81 3188

    [18]

    Grochola G 2004J. Chem. Phys 120 2122

    [19]

    Zhang L, Wang H, Car R, E W 2021Phys. Rev. Lett. 126 236001

    [20]

    Kruglov I A, Yanilkin A, Oganov A R, Korotaev P 2019Phys. Rev. B 100 174104

    [21]

    Chen T, Yuan F, Liu J, Geng H, Zhang L, Wang H, Chen M 2023Phys. Rev. Mater. 7 053603

    [22]

    Pártay L B, Bartók A P, Csányi G 2010J. Phys. Chem. B 114 10502

    [23]

    Dorrell J, Pártay L B 2020J. Phys. Chem. B 124 6015

    [24]

    Marchant G A, Caro M A, Karasulu B, Pártay L B 2023npj Comput. Mater. 9 131

    [25]

    Unglert N, Carrete J, Pártay L B, Madsen G K H 2023Phys. Rev. Mater. 7 123804

    [26]

    Laio A, Parrinello M 2002Proc. Natl. Acad. Sci. U.S.A. 99 12562

    [27]

    Barducci A, Bussi G, Parrinello M 2008Phys. Rev. Lett. 100 020603

    [28]

    Valsson O, Parrinello M 2014Phys. Rev. Lett. 113 090601

    [29]

    Dama J F, Rotskoff G, Parrinello M, Voth G A 2014J. Chem. Theory Comput. 10 3626

    [30]

    Piaggi P M, Parrinello M 2019Phys. Rev. Lett. 122 050601

    [31]

    Piaggi P M, Parrinello M 2019J. Chem. Phys 150 244119

    [32]

    Piaggi P M, Valsson O, Parrinello M 2017Phys. Rev. Lett. 119 015701

    [33]

    Invernizzi M, Valsson O, Parrinello M 2017Proc. Natl. Acad. Sci. U.S.A. 114 3370

    [34]

    Piaggi P M, Parrinello M 2018Proc. Natl. Acad. Sci. U.S.A. 115 10251

    [35]

    Oganov A R, Pickard C J, Zhu Q, Needs R J 2019Nat. Rev. Mater. 4 331

    [36]

    Niu H, Bonati L, Piaggi P M, Parrinello M 2020Nat. Commun. 11 2654

    [37]

    Invernizzi M, Piaggi P M, Parrinello M 2020Phys. Rev. X 10 041034

    [38]

    Tribello G A, Bonomi M, Branduardi D, Camilloni C, Bussi G 2014Comput. Phys. Commun. 185 604

    [39]

    Li Q J, Sheng H, Ma E 2019Nat. Commun. 10 3563

    [40]

    Dai S C, Yang Y, Wang Y J 2024Phys. Rev. Mater. 8 033607

    [41]

    Cao F H, Wang Y J, Dai L H 2020Acta Mater 194 283

    [42]

    Bussi G, Donadio D, Parrinello M 2007J. Chem. Phys 126 014101

    [43]

    Parrinello M, Rahman A 1981J. Appl. Phys. 52 7182

    [44]

    Flyvbjerg H, Petersen H G 1989J. Chem. Phys 91 461

    [45]

    Rein Ten Wolde P, Ruiz-Montero M J, Frenkel D 1996J. Chem. Phys 104 9932

    [46]

    Du J P, Yu P, Shinzato S, Meng F S, Sato Y, Li Y, Fan Y, Ogata S 2022Acta Mater. 240 118314

    [47]

    Oganov A R, Glass C W 2006J. Chem. Phys 124 244704

    [48]

    Gusev V V, Adamson D, Deligkas A, Antypov D, Collins C M, Krysta P, Potapov I, Darling G R, Dyer M S, Spirakis P, Rosseinsky M J 2023Nature 619 68

  • [1] 宋倩倩, 张博召, 丁俊. 体心立方多主元合金中原子应变的计算模拟.  , doi: 10.7498/aps.74.20250128
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , doi: 10.7498/aps.71.20220510
    [3] 蒋永林, 何长春, 杨小宝. ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测.  , doi: 10.7498/aps.70.20210998
    [4] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究.  , doi: 10.7498/aps.69.20200234
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算.  , doi: 10.7498/aps.68.20182128
    [6] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究.  , doi: 10.7498/aps.64.107101
    [7] 牛余全, 郑斌, 崔春红, 魏巍, 张彩霞, 孟庆田. 双柱胶体粒子与管状生物膜的相互作用.  , doi: 10.7498/aps.63.038701
    [8] 卢兆信. 参数修改对铁电薄膜相变性质的影响.  , doi: 10.7498/aps.62.116802
    [9] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究.  , doi: 10.7498/aps.62.018103
    [10] 孙春峰. 镶嵌正方晶格上Gauss模型的相图.  , doi: 10.7498/aps.61.086802
    [11] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理.  , doi: 10.7498/aps.61.226102
    [12] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究.  , doi: 10.7498/aps.60.046401
    [13] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析.  , doi: 10.7498/aps.58.2742
    [14] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响.  , doi: 10.7498/aps.55.4020
    [15] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究.  , doi: 10.7498/aps.55.2877
    [16] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图.  , doi: 10.7498/aps.54.307
    [17] 王震遐, 王 森, 胡建刚, 俞国军. 多壁碳纳米管在循环相变过程中结构变化初探.  , doi: 10.7498/aps.54.4263
    [18] 王 进, 赵志刚, 刘 楣, 邢定钰. 磁通格子的有序-无序相变和反向熔化.  , doi: 10.7498/aps.52.3162
    [19] 盛正卯, 骆军委. 利用扩展系综法计算水的自由能.  , doi: 10.7498/aps.52.2342
    [20] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民. Sm-Co-Ti三元系相关系及某些单相化合物的结构与磁性.  , doi: 10.7498/aps.50.752
计量
  • 文章访问数:  60
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-06

/

返回文章
返回
Baidu
map