搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物大分子多尺度理论和计算方法

李文飞 张建 王骏 王炜

引用本文:
Citation:

生物大分子多尺度理论和计算方法

李文飞, 张建, 王骏, 王炜

Multiscale theory and computational method for biomolecule simulations

Li Wen-Fei, Zhang Jian, Wang Jun, Wang Wei
PDF
导出引用
  • 分子模拟是研究生物大分子的重要手段. 过去二十年来, 人们将分子模拟与实验研究相结合, 揭示出生物大分子结构和动力学方面的诸多重要性质. 传统分子模拟主要采用全原子分子模型或各种粗粒化的分子模型. 在实际应用中, 传统分子模拟方法通常存在精度或效率瓶颈, 一定程度上限制了其应用范围. 近年来, 多尺度分子模型越来越受到人们的关注. 多尺度分子模型基于统计力学原理, 将全原子模型和粗粒化模型相耦合, 有望克服传统分子模拟方法中的精度/效率瓶颈, 进而拓展分子模拟在生物大分子研究中的应用范围. 根据模型之间的耦合方式, 近年来发展起来的多尺度分子模拟方法可归纳为如下四种类型: 混合分辨多尺度模型、并行耦合多尺度模型、单向耦合多尺度模型、以及自学习多尺度模型. 本文将对上述四类多尺度模型做简要介绍, 并讨论其主要优缺点、应用范围以及进一步发展方向.
    Molecular simulation is one of the most important ways of studying biomolecules. In the last two decades, by combining the molecular simulations with experiments, a number of key features of structure and dynamics of biomolecules have been reflealed. Traditional molecular simulations often use the all-atom model or some coarse grained models. In practical applications, however, these all-atom models and coarse grained models encounter the bottlenecks in accuracy and efficiency, respectively, which hinder their applications to some extent. In reflent years, the multiscale models have attracted much attention in the field of biomolecule simulations. In the multiscale model, the atomistic models and coarse grained models are combined together based on the principle of statistical physics, and thus the bottlenecks encountered in the traditional models can be overcome. The currently available multiscale models can be classified into four categories according to the coupling ways between the all-atom model and coarse gained model. They are 1) hybrid resolution multiscale model, 2) parallel coupling multiscale model, 3) one-way coupling multiscale model, and 4) self-learning multiscale model. All these multiscale strategies have achieved great success in certain aspects in the field of biomolecule simulations, including protein folding, aggregation, and functional motions of many kinds of protein machineries. In this review, we briefly introduce the above-mentioned four multiscale strategies, and the examples of their applications. We also discuss the limitations and advantages, as well as the application scopes of these multiscale methods. The directions for future work on improving these multiscale models are also suggested. Finally, a summary and some prospects are preflented.
    • 基金项目: 国家自然科学基金(批准号: 11174134, 11334004, 11274157, 11174133)和江苏省自然科学基金(批准号: BK2011546)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174134, 11334004, 11274157, 11174133), and the Natural Science Foundation of Jiangsu Province (Grant No. BK2011546).
    [1]

    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P 2007 Molecular Biology of the Cell (1st Ed.) (New York: Garland Science, Taylor & Francis Group)

    [2]

    Abrahams J P, Leslie A G W, Lutter R, Walker J E 1994 Nature 370 621

    [3]

    Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 Embo. J. 27 3279

    [4]

    Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT 2009 Cell 139 744

    [5]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C, Rief M 2011 Science 334 512

    [6]

    Lv C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [7]

    Lindorff-Larsen K, Piana S, Dror RO, Shaw D E 2011 Science 334 517

    [8]

    Zhang J, Li W F, Wang J, Qin M, Wu L, Yan Z Q, Xu W X, Zuo G H, Wang W 2009 Iubmb Life 61 627

    [9]

    Levitt M, Warshel A 1975 Nature 253 694

    [10]

    Li W F, Zhang J, Wang J, Wang W 2008 J. Am. Chem. Soc. 130 892

    [11]

    Duan Y, Kollman P A 1998 Science 282 740

    [12]

    Zhao G P, Perilla J R, Yufenyuy E L, Meng X, Chen B, Ning J Y, Ahn J, Gronenborn A M, Schulten K, Aiken C 2013 Nature 497 643

    [13]

    Guo C, Luo Y, Zhou R H, Wei G H 2012 ACS Nano 6 3907

    [14]

    Xie L G, Luo Y, Lin D D, Xi W H, Yang X J, Wei G H 2014 Nanoscale 6 9752

    [15]

    He J B, Zhang Z Y, Shi Y Y, Liu H Y 2013 J. Chem. Phys. 119 4005

    [16]

    Li W F, Zhang J, Su Y, Wang J, Qin M, Wang W 2007 J. Phys. Chem. B 111 13814

    [17]

    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W 2014 PLoS Comput. Biol. 10 e1003562

    [18]

    Inanami T, Terada T P, Sasai M 2014 Proc. Natl. Acad. Sci. USA. 111 15969

    [19]

    Huang Y D, Shuai J W 2013 J. Phys. Chem. B 7 11

    [20]

    Takada S 2012 Curr. Opin. Struct. Biol. 22 130

    [21]

    Vendruscolo M, Dobson CM 2011 Current Biology 21 R68

    [22]

    Tozzini V 2010 Q. Rev. Biophys. 43 333

    [23]

    Tozzini V 2005 Curr. Opin. Struc. Biol. 15 144

    [24]

    Xu W X, Lai Z Z, Oliveira R J, Leite V B P, Wang J 2012 J. Phys. Chem. B 116 5152

    [25]

    Yao X Q, Kenzaki H, Murakami S, Takada S 2010 Nature Commun. 1 1116

    [26]

    Moritsugu K, Smith J C 2007 Biophys. J. 93 3460

    [27]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812

    [28]

    Zuo G H, Wang J, Wang W 2006 Proteins 63 165

    [29]

    Koga N, Takada S 2001 J. Mol. Biol. 313 171

    [30]

    Clementi C, Nymeyer H, Onuchic J N 2000 J. Mol. Biol. 298 937

    [31]

    Onuchic J N, Luthey-Schulten Z, Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545

    [32]

    Go N 1983 Annu. Rev. Biophys. Bioeng. 12 183

    [33]

    Zhou H X 2014 Curr. Opin. Struct. Biol. 25 67

    [34]

    Li W F, Yoshii H, Hori N, Kameda T, Takada S 2010 Methods 52 106

    [35]

    Li W F, Takada S 2010 Biophys. J. 99 3029

    [36]

    Li WF, Takada S 2009 J. Chem. Phys. 130 214108

    [37]

    Praprotnik M, Delle Site L, Krefler K 2008 Annu. Rev Phys. Chem. 59 545

    [38]

    Liu P, Shi Q, Lyman E, Voth G A 2008 J. Chem. Phys. 129 114103

    [39]

    Liu P, Voth G A 2007 J. Chem. Phys. 126 045106

    [40]

    Chu J W, Ayton G S, Izvekov S, Voth G 2007 Mol. Phys. 105 167

    [41]

    Lyman E, Zuckerman D M 2006 J. Chem. Theory Comput. 2 656

    [42]

    Lyman E, Ytreflerg F M, Zuckerman D M 2006 Phys. Rev. Lett. 96 028105

    [43]

    Christen M, van Gunsteren W F 2006 J. Chem. Phys. 124 154106

    [44]

    Neri M, Anselmi C, Cascella M, Maritan A, Carloni P 2005 Phys. Rev. Lett. 95 218102

    [45]

    Lwin T Z, Luo R 2005 J. Chem. Phys. 123 194904

    [46]

    Izvekov S, Voth G A 2005 J. Phys. Chem. B 109 2469

    [47]

    Reith D, Putz M, Muller-Plathe F 2003 J. Comput. Chem. 24 1624

    [48]

    Peter C, Krefler K 2010 Faraday Discuss 144 9

    [49]

    Peter C, Krefler K 2009 Soft Matter 5 4357

    [50]

    Praprotnik M, Delle Site L, Krefler K J. Chem. Phys. 123 224106

    [51]

    Moritsugu K, Terada T, Kidera A 2010 J. Chem. Phys. 133 224105

    [52]

    Moritsugu K, Terada T, Kidera A 2012 J. Am. Chem. Soc. 134 7094

    [53]

    Li W F, Wang W, Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550

    [54]

    Li W F, Terakawa T, Wang W, Takada S 2012 Proc. Natl. Acad. Sci. USA 109 17789

    [55]

    Li W F, Wolynes P G, Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504

    [56]

    Warshel A, Levitt M 1976 J. Mol. Biol. 103 23

    [57]

    Thorpe I F, Zhou J, Voth G A 2008 J. Phys. Chem. B 112 13079

    [58]

    Trylska J, Tozzini V, McCammon J A 2005 Biophys. J. 89 1455

    [59]

    Hori N, Takada S 2012 J. Chem. Theory Comput. 8 3384

    [60]

    Gohlke H, Kiel C, Case D A 2003 J. Mol. Biol. 330 891

    [61]

    Li W F, Wang J, Zhang J, Wang W 2014 Curr. Opin. Struct. Biol. 30 25

    [62]

    Terakawa T, Takada S 2011 Biophys. J. 101 1450

    [63]

    Bryngelson J D, Onuchic J N, Socci N D, Wolynes P G 1995 Proteins 21 167

    [64]

    Pirchi M, Ziv G, Riven I, Cohen SS, Zohar N, Barak Y, Haran G 2011 Nat. Commun. 2 493

    [65]

    King N P, Jacobitz A W, Sawaya M R, Goldschmidt L, Yeates T O 2010 Proc. Natl. Acad. Sci. USA 107 20732

    [66]

    Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K I, Yao X Q, Takada S 1992 J. Chem. Theory Comput. 7 1979

    [67]

    Kumar S, Bouzida D, Swendsen R H, Kollman P A, Rosenberg J M 2013 J. Comput. Chem. 13 1011

    [68]

    Heath A P, Kavraki L E, Clementi C 2007 Proteins 68 646

    [69]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [70]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

  • [1]

    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P 2007 Molecular Biology of the Cell (1st Ed.) (New York: Garland Science, Taylor & Francis Group)

    [2]

    Abrahams J P, Leslie A G W, Lutter R, Walker J E 1994 Nature 370 621

    [3]

    Sun B, Wei K J, Zhang B, Zhang X H, Dou S X, Li M, Xi X G 2008 Embo. J. 27 3279

    [4]

    Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT 2009 Cell 139 744

    [5]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C, Rief M 2011 Science 334 512

    [6]

    Lv C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [7]

    Lindorff-Larsen K, Piana S, Dror RO, Shaw D E 2011 Science 334 517

    [8]

    Zhang J, Li W F, Wang J, Qin M, Wu L, Yan Z Q, Xu W X, Zuo G H, Wang W 2009 Iubmb Life 61 627

    [9]

    Levitt M, Warshel A 1975 Nature 253 694

    [10]

    Li W F, Zhang J, Wang J, Wang W 2008 J. Am. Chem. Soc. 130 892

    [11]

    Duan Y, Kollman P A 1998 Science 282 740

    [12]

    Zhao G P, Perilla J R, Yufenyuy E L, Meng X, Chen B, Ning J Y, Ahn J, Gronenborn A M, Schulten K, Aiken C 2013 Nature 497 643

    [13]

    Guo C, Luo Y, Zhou R H, Wei G H 2012 ACS Nano 6 3907

    [14]

    Xie L G, Luo Y, Lin D D, Xi W H, Yang X J, Wei G H 2014 Nanoscale 6 9752

    [15]

    He J B, Zhang Z Y, Shi Y Y, Liu H Y 2013 J. Chem. Phys. 119 4005

    [16]

    Li W F, Zhang J, Su Y, Wang J, Qin M, Wang W 2007 J. Phys. Chem. B 111 13814

    [17]

    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W 2014 PLoS Comput. Biol. 10 e1003562

    [18]

    Inanami T, Terada T P, Sasai M 2014 Proc. Natl. Acad. Sci. USA. 111 15969

    [19]

    Huang Y D, Shuai J W 2013 J. Phys. Chem. B 7 11

    [20]

    Takada S 2012 Curr. Opin. Struct. Biol. 22 130

    [21]

    Vendruscolo M, Dobson CM 2011 Current Biology 21 R68

    [22]

    Tozzini V 2010 Q. Rev. Biophys. 43 333

    [23]

    Tozzini V 2005 Curr. Opin. Struc. Biol. 15 144

    [24]

    Xu W X, Lai Z Z, Oliveira R J, Leite V B P, Wang J 2012 J. Phys. Chem. B 116 5152

    [25]

    Yao X Q, Kenzaki H, Murakami S, Takada S 2010 Nature Commun. 1 1116

    [26]

    Moritsugu K, Smith J C 2007 Biophys. J. 93 3460

    [27]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H 2007 J. Phys. Chem. B 111 7812

    [28]

    Zuo G H, Wang J, Wang W 2006 Proteins 63 165

    [29]

    Koga N, Takada S 2001 J. Mol. Biol. 313 171

    [30]

    Clementi C, Nymeyer H, Onuchic J N 2000 J. Mol. Biol. 298 937

    [31]

    Onuchic J N, Luthey-Schulten Z, Wolynes P G 1997 Annu. Rev. Phys. Chem. 48 545

    [32]

    Go N 1983 Annu. Rev. Biophys. Bioeng. 12 183

    [33]

    Zhou H X 2014 Curr. Opin. Struct. Biol. 25 67

    [34]

    Li W F, Yoshii H, Hori N, Kameda T, Takada S 2010 Methods 52 106

    [35]

    Li W F, Takada S 2010 Biophys. J. 99 3029

    [36]

    Li WF, Takada S 2009 J. Chem. Phys. 130 214108

    [37]

    Praprotnik M, Delle Site L, Krefler K 2008 Annu. Rev Phys. Chem. 59 545

    [38]

    Liu P, Shi Q, Lyman E, Voth G A 2008 J. Chem. Phys. 129 114103

    [39]

    Liu P, Voth G A 2007 J. Chem. Phys. 126 045106

    [40]

    Chu J W, Ayton G S, Izvekov S, Voth G 2007 Mol. Phys. 105 167

    [41]

    Lyman E, Zuckerman D M 2006 J. Chem. Theory Comput. 2 656

    [42]

    Lyman E, Ytreflerg F M, Zuckerman D M 2006 Phys. Rev. Lett. 96 028105

    [43]

    Christen M, van Gunsteren W F 2006 J. Chem. Phys. 124 154106

    [44]

    Neri M, Anselmi C, Cascella M, Maritan A, Carloni P 2005 Phys. Rev. Lett. 95 218102

    [45]

    Lwin T Z, Luo R 2005 J. Chem. Phys. 123 194904

    [46]

    Izvekov S, Voth G A 2005 J. Phys. Chem. B 109 2469

    [47]

    Reith D, Putz M, Muller-Plathe F 2003 J. Comput. Chem. 24 1624

    [48]

    Peter C, Krefler K 2010 Faraday Discuss 144 9

    [49]

    Peter C, Krefler K 2009 Soft Matter 5 4357

    [50]

    Praprotnik M, Delle Site L, Krefler K J. Chem. Phys. 123 224106

    [51]

    Moritsugu K, Terada T, Kidera A 2010 J. Chem. Phys. 133 224105

    [52]

    Moritsugu K, Terada T, Kidera A 2012 J. Am. Chem. Soc. 134 7094

    [53]

    Li W F, Wang W, Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550

    [54]

    Li W F, Terakawa T, Wang W, Takada S 2012 Proc. Natl. Acad. Sci. USA 109 17789

    [55]

    Li W F, Wolynes P G, Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504

    [56]

    Warshel A, Levitt M 1976 J. Mol. Biol. 103 23

    [57]

    Thorpe I F, Zhou J, Voth G A 2008 J. Phys. Chem. B 112 13079

    [58]

    Trylska J, Tozzini V, McCammon J A 2005 Biophys. J. 89 1455

    [59]

    Hori N, Takada S 2012 J. Chem. Theory Comput. 8 3384

    [60]

    Gohlke H, Kiel C, Case D A 2003 J. Mol. Biol. 330 891

    [61]

    Li W F, Wang J, Zhang J, Wang W 2014 Curr. Opin. Struct. Biol. 30 25

    [62]

    Terakawa T, Takada S 2011 Biophys. J. 101 1450

    [63]

    Bryngelson J D, Onuchic J N, Socci N D, Wolynes P G 1995 Proteins 21 167

    [64]

    Pirchi M, Ziv G, Riven I, Cohen SS, Zohar N, Barak Y, Haran G 2011 Nat. Commun. 2 493

    [65]

    King N P, Jacobitz A W, Sawaya M R, Goldschmidt L, Yeates T O 2010 Proc. Natl. Acad. Sci. USA 107 20732

    [66]

    Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K I, Yao X Q, Takada S 1992 J. Chem. Theory Comput. 7 1979

    [67]

    Kumar S, Bouzida D, Swendsen R H, Kollman P A, Rosenberg J M 2013 J. Comput. Chem. 13 1011

    [68]

    Heath A P, Kavraki L E, Clementi C 2007 Proteins 68 646

    [69]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [70]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

  • [1] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制.  , 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] 张雪松, 范振忠, 仝其雷, 付沅峰. 基于分子模拟方法的纳米气泡溃灭过程分析.  , 2024, 73(20): 204701. doi: 10.7498/aps.73.20241105
    [3] 杨建宇, 席昆, 竺立哲. 生物大分子过渡态搜索算法及其中的机器学习.  , 2023, 72(24): 248701. doi: 10.7498/aps.72.20231319
    [4] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [5] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [6] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [7] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟.  , 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [8] 康文斌, 王骏, 王炜. 内禀无序蛋白构象与带电氨基酸残基排布关系——以精氨酸和天冬氨酸组成的随机多肽为例.  , 2018, 67(5): 058701. doi: 10.7498/aps.67.20172246
    [9] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟.  , 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [10] 程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮. 锂离子电池多尺度数值模型的应用现状及发展前景.  , 2015, 64(21): 210202. doi: 10.7498/aps.64.210202
    [11] 吴莎, 李锦, 张明丽, 王俊. 基于改进的符号转移熵的心脑电信号耦合研究.  , 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [12] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究.  , 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [13] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法.  , 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [14] 向辉, 刘大欢, 阳庆元, 密建国, 仲崇立. 骨架柔性对短链烷烃分子在金属-有机骨架材料中扩散的影响.  , 2011, 60(9): 093602. doi: 10.7498/aps.60.093602
    [15] 王冬一, 薛春瑜, 仲崇立. 金属-有机骨架材料二聚铜-苯-1,3,5-三羧酸酯中烷烃扩散机理的分子模拟研究.  , 2009, 58(8): 5552-5559. doi: 10.7498/aps.58.5552
    [16] 丁 沙, 王小慧, 杜予民, 王取泉. 生物大分子杂化处理的CdSe/ZnS核/壳量子点多层膜的超快三阶非线性研究.  , 2006, 55(2): 753-757. doi: 10.7498/aps.55.753
    [17] 封国林, 侯 威, 董文杰. 基于条件熵长江三角洲温度的非线性动力学特征分析.  , 2006, 55(2): 962-968. doi: 10.7498/aps.55.962
    [18] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为.  , 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [19] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性.  , 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [20] 吴鸣成, 袁笃平, 朱昂如, 陆惠宗, 俞立明, 王兆永. 用光声谱研究大分子吸附物的振动谱.  , 1987, 36(2): 270-274. doi: 10.7498/aps.36.270
计量
  • 文章访问数:  9757
  • PDF下载量:  929
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-03-05
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map