-
The relationship among dynamic relaxation, deformation and microstructural heterogeneity of amorphous alloy is one of the important research contents in the field of amorphous physics. In this paper, we utilize Zr48(Cu5/6Ag1/6)44Al8 bulk amorphous alloy with excellent glass forming capability and good thermal stability as a research carrier, and investigate the effects of temperature and structural relaxation on dynamic relaxation and deformation behavior through dynamic mechanical analysis and stress relaxation experiments. The results show that the dynamic relaxation spectrum of the model alloy is sensitive to temperature, showing four stages as the temperature increases, namely, iso configuration, aging, glass transition and crystallization. Based on the isothermal measurement of dynamic mechanical parameters under the glass transition temperature, the structural relaxation causes the amorphous alloy to migrate from the non-equilibrium high energy state to the low energy state, and the evolution of internal friction with aging time can be described by Kohlrausch-Williams-Watts (KWW) stretched exponential function. In addition, based on the KWW equation and activation energy spectrum, the activation of heterogeneous structure in the stress relaxation process of model alloy is analyzed, which involves the transformation from elastic deformation to nonelastic deformation. Owing to the microstructural heterogeneity and energy fluctuations in amorphous alloys, the activation of deformation units is not a single characteristic time, but follows a certain distribution. By considering that the characteristic time distribution of activation of deformation units is symmetric Gauss distribution or asymmetric Gumbel distribution on a logarithmic time scale, the heterogeneous activation process in stress relaxation response can be reconstructed.
[1] Suryanarayana C, Inoue A 2017 Bulk Metallic Glasses (Boca Raton: CRC Press) pp465–503
[2] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[3] Wang W H 2012 Prog. Mater. Sci. 57 487
Google Scholar
[4] Inoue A, Takeuchi A 2011 Acta Mater. 59 2243
Google Scholar
[5] Khmich A, Hassani A, Sbiaai K, Hasnaoui A 2021 Int. J. Mech. Sci. 204 106546
Google Scholar
[6] 曹庆平, 吕林波, 王晓东, 蒋建中 2021 金属学报 57 473
Google Scholar
Cao Q P, Lü L B, Wang X D, Z J J 2021 Acta. Metall. Sin. 57 473
Google Scholar
[7] 李宁, 黄信 2021 金属学报 57 529
Google Scholar
Li N, Huang X 2021 Acta. Metall. Sin. 57 529
Google Scholar
[8] 毕甲紫, 刘晓斌, 李然, 张涛 2021 金属学报 57 559
Google Scholar
Bi J Z, Liu X B, Li R, Z T 2021 Acta. Metall. Sin. 57 559
Google Scholar
[9] Sun Q, Hu L, Zhou C, Zheng H, Yue Y 2015 J. Chem. Phys. 143 164504
Google Scholar
[10] Qiao J C, Pelletier J M 2014 J. Mater. Sci. Technol. 30 523
Google Scholar
[11] Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 16402
Google Scholar
[12] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
Google Scholar
[13] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288
Google Scholar
[14] Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China-Phys. Mech. Astron. 64 296111
Google Scholar
[15] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402
Google Scholar
[16] Wang Q, Pelletier J M, Blandin J J, Suéry M 2005 J. Non-Cryst. Solids. 351 2224
Google Scholar
[17] Perez J 1998 Physics and Mechanics of Amorphous Polymers (London: Routledge) p5
[18] Qiao J C, Pelletier J M, Yao Y 2019 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 743 185
Google Scholar
[19] Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502
Google Scholar
[20] Wang W H. 2019 Prog. Mater. Sci. 106 100561
Google Scholar
[21] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117
Google Scholar
Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, T K 2022 Adv. Mech. 52 117
Google Scholar
[22] Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119 215501
Google Scholar
[23] Kubin P L 1974 Philos. Mag. 30 705
Google Scholar
[24] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903
Google Scholar
[25] Argon A S, Kuo H Y 1979 Mater. Sci. Eng. 39 101
Google Scholar
[26] Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002
Google Scholar
[27] Duan Y J, Zhang L T, Qiao J C, Wang, Yun Jiang, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501
Google Scholar
[28] Ferry J D 1980 Viscoelastics Properties of Polymers (New York: Wiley) pp183–200
[29] Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. Non-Linear Mech. 46 496
Google Scholar
-
-
[1] Suryanarayana C, Inoue A 2017 Bulk Metallic Glasses (Boca Raton: CRC Press) pp465–503
[2] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[3] Wang W H 2012 Prog. Mater. Sci. 57 487
Google Scholar
[4] Inoue A, Takeuchi A 2011 Acta Mater. 59 2243
Google Scholar
[5] Khmich A, Hassani A, Sbiaai K, Hasnaoui A 2021 Int. J. Mech. Sci. 204 106546
Google Scholar
[6] 曹庆平, 吕林波, 王晓东, 蒋建中 2021 金属学报 57 473
Google Scholar
Cao Q P, Lü L B, Wang X D, Z J J 2021 Acta. Metall. Sin. 57 473
Google Scholar
[7] 李宁, 黄信 2021 金属学报 57 529
Google Scholar
Li N, Huang X 2021 Acta. Metall. Sin. 57 529
Google Scholar
[8] 毕甲紫, 刘晓斌, 李然, 张涛 2021 金属学报 57 559
Google Scholar
Bi J Z, Liu X B, Li R, Z T 2021 Acta. Metall. Sin. 57 559
Google Scholar
[9] Sun Q, Hu L, Zhou C, Zheng H, Yue Y 2015 J. Chem. Phys. 143 164504
Google Scholar
[10] Qiao J C, Pelletier J M 2014 J. Mater. Sci. Technol. 30 523
Google Scholar
[11] Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 16402
Google Scholar
[12] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
Google Scholar
[13] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288
Google Scholar
[14] Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China-Phys. Mech. Astron. 64 296111
Google Scholar
[15] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402
Google Scholar
[16] Wang Q, Pelletier J M, Blandin J J, Suéry M 2005 J. Non-Cryst. Solids. 351 2224
Google Scholar
[17] Perez J 1998 Physics and Mechanics of Amorphous Polymers (London: Routledge) p5
[18] Qiao J C, Pelletier J M, Yao Y 2019 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 743 185
Google Scholar
[19] Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502
Google Scholar
[20] Wang W H. 2019 Prog. Mater. Sci. 106 100561
Google Scholar
[21] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117
Google Scholar
Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, T K 2022 Adv. Mech. 52 117
Google Scholar
[22] Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119 215501
Google Scholar
[23] Kubin P L 1974 Philos. Mag. 30 705
Google Scholar
[24] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903
Google Scholar
[25] Argon A S, Kuo H Y 1979 Mater. Sci. Eng. 39 101
Google Scholar
[26] Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002
Google Scholar
[27] Duan Y J, Zhang L T, Qiao J C, Wang, Yun Jiang, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501
Google Scholar
[28] Ferry J D 1980 Viscoelastics Properties of Polymers (New York: Wiley) pp183–200
[29] Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. Non-Linear Mech. 46 496
Google Scholar
Catalog
Metrics
- Abstract views: 4230
- PDF Downloads: 118
- Cited By: 0