[1] |
Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica,
2024, 73(4): 046101.
doi: 10.7498/aps.73.20231421
|
[2] |
Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica,
2020, 69(11): 116101.
doi: 10.7498/aps.69.20191781
|
[3] |
Song Xu, Lu Yong-Jun, Shi Ming-Liang, Zhao Xiang, Wang Feng-Hui. Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium-ion battery electrode. Acta Physica Sinica,
2018, 67(14): 140201.
doi: 10.7498/aps.67.20180148
|
[4] |
Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica,
2017, 66(17): 176109.
doi: 10.7498/aps.66.176109
|
[5] |
Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica,
2017, 66(18): 186101.
doi: 10.7498/aps.66.186101
|
[6] |
Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica,
2017, 66(17): 176110.
doi: 10.7498/aps.66.176110
|
[7] |
Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica,
2017, 66(17): 176113.
doi: 10.7498/aps.66.176113
|
[8] |
Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica,
2017, 66(17): 176104.
doi: 10.7498/aps.66.176104
|
[9] |
Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica,
2017, 66(17): 176112.
doi: 10.7498/aps.66.176112
|
[10] |
Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica,
2017, 66(17): 176106.
doi: 10.7498/aps.66.176106
|
[11] |
Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica,
2017, 66(17): 176103.
doi: 10.7498/aps.66.176103
|
[12] |
Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica,
2017, 66(17): 176409.
doi: 10.7498/aps.66.176409
|
[13] |
Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica,
2017, 66(17): 178101.
doi: 10.7498/aps.66.178101
|
[14] |
Yang Jian-Qun, Ma Guo-Liang, Li Xing-Ji, Liu Chao-Ming, Liu Hai. Compressive behavior of nanocrystalline nickel at various temperatures and strain rates. Acta Physica Sinica,
2015, 64(13): 137103.
doi: 10.7498/aps.64.137103
|
[15] |
Xu Shuang, Guo Ya-Fang. Generation and evolution of vacancy-type defects in nano-Cu films during plastic deformation by means molecular dynamics. Acta Physica Sinica,
2013, 62(19): 196201.
doi: 10.7498/aps.62.196201
|
[16] |
Hu Yong, Yan Hong-Hong, Lin Tao, Li Jin-Fu, Zhou Yao-He. Free volume evolution of pre-annealed Zr55Al10Ni5Cu30 bulk metallic glass during rolling. Acta Physica Sinica,
2012, 61(8): 087102.
doi: 10.7498/aps.61.087102
|
[17] |
Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica,
2011, 60(1): 016107.
doi: 10.7498/aps.60.016107
|
[18] |
Chen Xian-Miao, Song Shen-Hua. Non-equilibrium grain boundary segregation of phosphorous during high temperature plastic deformation. Acta Physica Sinica,
2009, 58(13): 183-S188.
doi: 10.7498/aps.58.183
|
[19] |
Wang Hai-Long, Wang Xiu-Xi, Wang Yu, Liang Hai-Yi. Molecular dynamics simulation of deformation-induced crystallization mechanism in amorphous Ti3Al alloy. Acta Physica Sinica,
2007, 56(3): 1489-1493.
doi: 10.7498/aps.56.1489
|
[20] |
Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica,
2005, 54(8): 3862-3866.
doi: 10.7498/aps.54.3862
|