-
表征纳米尺度结构非均匀对于理解非晶合金的变形、弛豫等动力学行为至关重要.受时空尺度限制,非晶合金纳米尺度结构非均匀的实验表征具有很大的挑战性.本文针对一种典型的锆基非晶合金,开展了同步辐射小角X射线散射原位拉伸实验.通过对散射曲线的定量分析,揭示了非晶合金在纳米尺度的非均匀结构图像.首先,Porod散射曲线呈现正偏离行为,表明非晶合金属于非理想两相散射体系,两相界面弥散且任一相内都存在电子密度涨落.基于散射曲线的Guinier定律分析,进一步揭示非晶合金中散射体形状远偏离球形,其特征尺度主要分布在0.8-1.6 nm之间,且在弹性变形阶段几乎不变.最后,通过Debye相关函数分析,发现这些纳米尺度散射体仅在1 nm之内存在强关联,符合非晶合金短程有序、长程无序的结构特征.研究结果表明非晶合金中存在具有复杂空间分布的纳米尺度非均匀结构.Amorphous alloys are the glassy solids that are formed through the glass transition of high-temperature melts. They therefore inherit the long-ranger disorders of melts and many quenched-in defects such as free volume. This inevitably leads to structural heterogeneity on a nanoscale that is believed to be as fertile sites for initiating relaxation and flow. However, due to limitations of spatiotemporal measurements, experimental characterization of the nanoscale structural heterogeneity in amorphous alloys has faced a great challenges. In this paper, an in-situ tensile testing setup with synchrotron small angle X-ray scattering is designed for a Zr-based (Vitreloy 1) amorphous alloy. By the small angle X-ray scattering, the structural heterogeneity of the Vitreloy 1 amorphous alloy can be described by the fluctuation of electron density. The small angle scattering images are recorded with the charge coupled device (CCD) detector, and then are azimuthally integrated into the one-dimensional scattering intensity curves using the FIT2D software. We apply the Porod law, Guinier law and Debye law to the obtained scattering intensity curves, and attempt to obtain the information about structural heterogeneity in the Vitreloy 1 amorphous alloy at different stress levels.The results indicate that the scattering intensity curve of the Vitreloy 1 amorphous alloy exhibits the positive deviation of Porod law. This observation proves that the amorphous alloy belongs to the non-ideal two-phase system, corresponding to the complicated spatial distribution between soft/liquid-like and hard/solid-like phases. According to the Porod's law, it is revealed that the diffuse interface exists between the two phases, associated with the density fluctuations in either of phases. Furthermore, we demonstrate that different scatterers coexist in the amorphous alloy and their characteristic sizes measured by the radius of gyration are mainly distributed between 0.8 nm and 1.6 nm. It deserves to note that the range of radii of gyration of scatterers are close to the equivalent sizes (1.3–1.9 nm) of shear transformation zones (STZs) for plastic flow in amorphous alloys. In addition, the shape of scatterer is far from a sphere, reminiscent of STZ activation regions of flat discs. It is therefore concluded that the scatterers with larger gyration radius correspond to the soft regions for the potential STZs, while those with smaller gyration radius correspond to the hard regions with lower free volume concentration. Finally, based on the correlation function defined by Debye, we analyze the correlation of electron density fluctuation between two arbitrary scatterers. The result indicates that the nanoscale scatterers in the amorphous alloy are strongly correlated only within a range of about 1 nm, which is consistent with the short-range ordered and long-range disordered structural features of the amorphous alloy. The image of the nanoscale heterogeneous structures characterized by the small angle X-ray scattering is almost not changed in the elastic deformation stage of the amorphous alloy. The present findings increase our understanding of the nanoscale structural heterogeneity in amorphous alloys, which is an important step to describe glass flow and relaxation.
-
Keywords:
- amorphous alloys /
- nanoscale structural heterogeneity /
- small angle X-ray scattering /
- deformation
[1] Orowan E 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 605
[2] Polanyi M 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 660
[3] Taylor G I 1934 Proc. Roy. Soc. London. Series A: Containing Papers of a Mathematical and Physical Character 145 362
[4] Fang T H, Li W L, Tao N R, Lu K 2011 Science 331 1587
[5] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153
[6] Wu X L, Yang M X, Yuan F P, Wu G, Wei Y J, Huang X X, Zhu Y T 2015 Proc. Natl. Acad. Sci. USA 112 14501
[7] Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267
[8] Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 190
[9] Wang Y J, Jiang M Q, Tian Z L, Dai L H 2016 Scripta Mater. 112 37
[10] Greer A L 1995 Science 267 1947
[11] Johnson W L 1999 MRS Bull. 24 42
[12] Spaepen F 1977 Acta Metall. 25 407
[13] Spaepen F 1982 Interim Technical Report Harvard Univ., Cambridge, MA. Div. of Applied Sciences
[14] Argon A S 1979 Acta Metall. 27 47
[15] Falk M L, Langer J S 1998 Phys. Rev. E 57 7192
[16] Jiang M Q, Wilde G, Dai L H 2015 Mech. Mater. 81 72
[17] Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501
[18] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
[19] Eshelby John D 1957 Proc. Roy. Soc. London A: Math. Phys. Engineer. Sci. p376
[20] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
[21] Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203
[22] Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. USA 105 14769
[23] Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504
[24] Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501
[25] Srolovitz D, Maeda K, Vitek V, Egami T 1981 Philos. Mag. A 44 847
[26] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501
[27] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504
[28] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
[29] Walter J L, Legrand D G, Luborsky F E 1977 Mater. Sci. Eng. 29 161
[30] Osamura K, Shibue K, Suzuki R, Murakami Y, Takayama S 1981 J. Mater. Sci. 16 957
[31] Lamparter P, Kroeger D M, Spooner S 1987 Scripta Metall. 21 715
[32] Lamparter P, Steeb S 1988 J. Non-Cryst. Solids 106 137
[33] Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104 013522
[34] Lan S, Wu Z D, Wang X L 2017 Chin. Phys. B 26 17104
[35] Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33
[36] Wang X D, Bednarcik J, Franz H, Lou H B, He Z H, Cao Q P, Jiang J Z 2009 Appl. Phys. Lett. 94 011911
[37] Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501
[38] Liu X J, Hui X D, Chen G L, Sun M H 2008 Intermetallics 16 10
[39] Jiang M Q, Naderi M, Wang Y J, Peterlechner M, Liu X F, Zeng F, Jiang F, Dai L H, Wilde G 2015 AIP. ADV 5 127133
[40] Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385
[41] Guimer A, Fournet G 1955 (New York: John Wiley & Sons)
[42] Porod G 1951 Colloid Polymer Sci. 124 83
[43] Debye P, Bueche A M 1949 J. Appl. Phys. 20 518
[44] Debye P, Anderson H R, Brumberger H 1957 J. Appl. Phys. 28 679
[45] Li Z H, Wu Z H, Mo G, Xing X Q, Liu P 2014 Instrum. Sci. Technol. 42 128
[46] Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501
[47] Egami T 2011 Prog. Mater. Sci. 56 637
[48] Li Z H 2013 Chin. Phys. C 37 110
[49] Pan J, Chan K C, Chen Q, Liu L 2012 Intermetallics 24 79
[50] Zhang M, Dai L H, Liu Y, Liu L 2015 Scripta Mater. 107 111
[51] Murali P, Zhang Y W, Gao H J 2012 Appl. Phys. Lett. 100 4067
[52] Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J 2011 Acta Mater. 59 2057
[53] Li Z H 2002 Ph. D. Dissertation (Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science) (in Chinese) [李志宏 2002 博士学位论文(太原: 中国科学院山西煤炭化学研究所)]
-
[1] Orowan E 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 605
[2] Polanyi M 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 660
[3] Taylor G I 1934 Proc. Roy. Soc. London. Series A: Containing Papers of a Mathematical and Physical Character 145 362
[4] Fang T H, Li W L, Tao N R, Lu K 2011 Science 331 1587
[5] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153
[6] Wu X L, Yang M X, Yuan F P, Wu G, Wei Y J, Huang X X, Zhu Y T 2015 Proc. Natl. Acad. Sci. USA 112 14501
[7] Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267
[8] Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 190
[9] Wang Y J, Jiang M Q, Tian Z L, Dai L H 2016 Scripta Mater. 112 37
[10] Greer A L 1995 Science 267 1947
[11] Johnson W L 1999 MRS Bull. 24 42
[12] Spaepen F 1977 Acta Metall. 25 407
[13] Spaepen F 1982 Interim Technical Report Harvard Univ., Cambridge, MA. Div. of Applied Sciences
[14] Argon A S 1979 Acta Metall. 27 47
[15] Falk M L, Langer J S 1998 Phys. Rev. E 57 7192
[16] Jiang M Q, Wilde G, Dai L H 2015 Mech. Mater. 81 72
[17] Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501
[18] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
[19] Eshelby John D 1957 Proc. Roy. Soc. London A: Math. Phys. Engineer. Sci. p376
[20] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
[21] Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203
[22] Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. USA 105 14769
[23] Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504
[24] Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501
[25] Srolovitz D, Maeda K, Vitek V, Egami T 1981 Philos. Mag. A 44 847
[26] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501
[27] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504
[28] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
[29] Walter J L, Legrand D G, Luborsky F E 1977 Mater. Sci. Eng. 29 161
[30] Osamura K, Shibue K, Suzuki R, Murakami Y, Takayama S 1981 J. Mater. Sci. 16 957
[31] Lamparter P, Kroeger D M, Spooner S 1987 Scripta Metall. 21 715
[32] Lamparter P, Steeb S 1988 J. Non-Cryst. Solids 106 137
[33] Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104 013522
[34] Lan S, Wu Z D, Wang X L 2017 Chin. Phys. B 26 17104
[35] Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33
[36] Wang X D, Bednarcik J, Franz H, Lou H B, He Z H, Cao Q P, Jiang J Z 2009 Appl. Phys. Lett. 94 011911
[37] Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501
[38] Liu X J, Hui X D, Chen G L, Sun M H 2008 Intermetallics 16 10
[39] Jiang M Q, Naderi M, Wang Y J, Peterlechner M, Liu X F, Zeng F, Jiang F, Dai L H, Wilde G 2015 AIP. ADV 5 127133
[40] Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385
[41] Guimer A, Fournet G 1955 (New York: John Wiley & Sons)
[42] Porod G 1951 Colloid Polymer Sci. 124 83
[43] Debye P, Bueche A M 1949 J. Appl. Phys. 20 518
[44] Debye P, Anderson H R, Brumberger H 1957 J. Appl. Phys. 28 679
[45] Li Z H, Wu Z H, Mo G, Xing X Q, Liu P 2014 Instrum. Sci. Technol. 42 128
[46] Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501
[47] Egami T 2011 Prog. Mater. Sci. 56 637
[48] Li Z H 2013 Chin. Phys. C 37 110
[49] Pan J, Chan K C, Chen Q, Liu L 2012 Intermetallics 24 79
[50] Zhang M, Dai L H, Liu Y, Liu L 2015 Scripta Mater. 107 111
[51] Murali P, Zhang Y W, Gao H J 2012 Appl. Phys. Lett. 100 4067
[52] Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J 2011 Acta Mater. 59 2057
[53] Li Z H 2002 Ph. D. Dissertation (Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science) (in Chinese) [李志宏 2002 博士学位论文(太原: 中国科学院山西煤炭化学研究所)]
计量
- 文章访问数: 7524
- PDF下载量: 728
- 被引次数: 0