搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同力学激励形式探索La基非晶合金微观结构非均匀性

张剑 郝奇 张浪渟 乔吉超

引用本文:
Citation:

不同力学激励形式探索La基非晶合金微观结构非均匀性

张剑, 郝奇, 张浪渟, 乔吉超

Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli

Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao
PDF
HTML
导出引用
  • 非晶合金力学行为与其微观结构非均匀性之间本征关联, 是固体力学研究领域至今未能很好解决的重要科学问题之一. 单一力学激励形式并不能有效地描述非晶合金微观结构非均匀性, 特别是结构与动力学的关联. 如何探索非晶合金结构信息, 须将诸多因素综合, 在不同力学激励下研究非晶合金微观结构非均匀性与变形机理. 本研究以La62Cu12Ni12Al14非晶合金为模型体系, 利用动态力学分析仪研究非晶合金动态弛豫行为. 基于准点缺陷模型, 对模型合金体系α弛豫和β弛豫进行了分离. 借助于拉伸应变率跳实验, 探索非晶合金高温流变行为. 确定非晶合金塑性流变过程中弹性、滞弹性以及塑性变形的贡献. 本研究从非晶合金动态力学弛豫行为和宏观塑性流变行为出发, 尝试揭示微观非均匀性对非晶合金在不同激励形式中缺陷的激活、扩展和融合的物理本质.
    The intrinsic structural heterogeneity of amorphous alloy is closely related to the thermodynamics and dynamical behavior, such as relaxation/crystallization, glass transition and plastic deformation. However, the structural information is submerged into the meta-stable disordered long-range structure, which makes it very difficult to explore the structural heterogeneity of amorphous alloy. A mechanical excitation factor is insufficient to effectively describe the heterogeneity of the microstructure in amorphous alloy, particularly the correlation between structure and dynamics. To explore the essence of the structure in amorphous alloy, it is necessary to consider the different mechanical stimuli. La62Cu12Ni12Al14 amorphous alloy is selected as the model system, dynamic mechanical process is probed by dynamic mechanical analyzer (DMA). The contributions of α relaxation process and β relaxation process are described in the framework of the quasi-point defect theory. Based on the quasi-point defect theory, the α-relaxation and β-relaxation in the La-based amorphous alloy are separated. Tensile strain rate jump measurements are conducted to study the high temperature rheological behavior of amorphous alloy. The contributions of elasticity, anelasticity, and plastic deformation during the homogeneous flow of amorphous alloy are determined within the framework of quasi-point defect theory. The present work aims to reveal the structural heterogeneities of amorphous alloys under the action of dynamics on various temporal scales. The physical background of the activation, propagation and coalescence of defects in amorphous alloy under different mechanical stimuli are reviewed.
      通信作者: 乔吉超, qjczy@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51971178, 52271153)和陕西省杰出青年基金(批准号: 2021JC-12)资助的课题.
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51971178, 52271153) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JC-12).
    [1]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211Google Scholar

    [2]

    Greer A L 1995 Science 267 1947Google Scholar

    [3]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [4]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [5]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar

    Qiao J C, Zhang L T, Tong Y, Lü G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar

    [6]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [7]

    Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [8]

    王峥, 汪卫华 2017 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [9]

    Johari G P 2002 J. Non-Cryst. Solids 307 317

    [10]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [11]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [12]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [13]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar

    [14]

    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar

    [15]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar

    [16]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T 2020 Acta Mater. 200 42Google Scholar

    [17]

    Fan Y, Iwashita T, Egami T 2014 Nat. Commun. 5 5083Google Scholar

    [18]

    Wang N, Ding J, Yan F, Asta M, Ritchie R O, Li L 2018 npj Comput. Mater. 4 19Google Scholar

    [19]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar

    [20]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [21]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [22]

    Argon A S, Kuo H Y 1979 Mat. Sci. Eng. 39 101Google Scholar

    [23]

    Cavaille J, Perez J, Johari G 1989 Phys. Rev. B 39 2411Google Scholar

    [24]

    Guo J, Joo S H, Pi D, Kim W, Song Y, Kim H S, Zhang X, Kong D 2019 Adv. Eng. Mater. 21 1800918Google Scholar

    [25]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [26]

    Yang Q, Peng S X, Wang Z, Yu H B 2020 Natl. Sci. Rev. 7 1896Google Scholar

    [27]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 2204Google Scholar

    [28]

    Qiao J C, Chen Y H, Casalini R, Pelletier J M, Yao Y 2019 J. Mater. Sci. Tech 35 982Google Scholar

    [29]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201Google Scholar

    [30]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123Google Scholar

    [31]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar

    [32]

    Qiao J C, Pelletier J M 2012 J. Appl. Phys. 112 083528Google Scholar

    [33]

    Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001Google Scholar

    [34]

    Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China: Phys. , Mech. Astron. 64 1

    [35]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203Google Scholar

    [36]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [37]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [38]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [39]

    Argon A S 1979 Acta Metall. 27 47Google Scholar

    [40]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar

    [41]

    Langer J S 2015 Phys. Rev. E 92 012318Google Scholar

    [42]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar

    [43]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [44]

    Palmer R G, Stein D L, Abrahams E, Anderson P W 1984 Phys. Rev. Lett. 53 958Google Scholar

    [45]

    Gauthier C, Pelletier J M, David L, Vigier G, Perez J 2000 J. Non-Cryst. Solids 274 181Google Scholar

    [46]

    Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar

    [47]

    Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C, Khonik V A 2019 J. Non-Cryst. Solids 521 119474Google Scholar

    [48]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V 2020 Chin. Phys. B 29 086402Google Scholar

    [49]

    Tao K, Khonik V A, Qiao J C 2023 Int. J. Mech. Sci. 240 107941Google Scholar

    [50]

    Qiao J C, Pelletier J M 2012 Intermetallics 28 40Google Scholar

    [51]

    Qiao J C, Casalini R, Pelletier J M 2014 J. Chem. Phys. 141 104510

    [52]

    Perez J, Cavaille J Y, Etienne S, Jourdan C 1988 Rev. Phys. Appl. 23 125Google Scholar

    [53]

    Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. J. Nonlin. Mech 46 496Google Scholar

    [54]

    Bruns M, Hassani M, Varnik F, Hassanpour A, Divinski S, Wilde G 2021 Phys. Rev. Res. 3 013234Google Scholar

    [55]

    Zhang C, Qiao J C, Pelletier J M, Yao Y 2017 Intermetallics 86 88Google Scholar

    [56]

    Kawamura Y, Inoue A 2000 Appl. Phys. Lett. 77 1114Google Scholar

    [57]

    郝奇, 乔吉超, Pelletier J M 2020 力学学报 52 360Google Scholar

    Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar

    [58]

    Perez J 1998 Physics and Mechanics of Amorphous Polymers (Routledge, London) pp55–65

    [59]

    Pelletier J M, Van de Moortèle B, Lu I 2002 Mat. Sci. Eng. A 336 190Google Scholar

  • 图 1  La62Cu12Ni12Al14非晶合金DSC曲线 (升温速率: 20 K/min) , 插图为非晶合金的XRD衍射图

    Fig. 1.  DSC curve of La62Cu12Ni12Al14 amorphous alloy (heating rate is 20 K/min), insert shows the XRD pattern of the amorphous alloy.

    图 2  La62Cu12Ni12Al14非晶合金归一化储能模量E'/Eu和损耗模量E''/Eu随温度演化

    Fig. 2.  Evolution of the normalized storage modulus and loss modulus with temperature of La62Cu12Ni12Al14 amorphous alloy.

    图 3  La基非晶合金在不同加载频率时损耗模量随温度演化, 插图为lnf与1000/T之间关系

    Fig. 3.  Evolution of the loss modulus with temperature in various frequency, insert shows the correlation between lnf and 1000/T.

    图 4  不同体系非晶合金的β弛豫名义激活能分布[3134], 图中点划线区域为经验公式$ {{E}}_{{\beta } } =(24\pm 2){RT}\text{g} $包围区域

    Fig. 4.  Evolution of the β relaxation at different amorphous alloys with the glass transition temperature[3134], dotted area in the figure is the area surrounded by empirical formula $ {{E}}_{{\beta } } =(24\pm 2) {R}{{T}}_{{\text{g} } }$.

    图 5  等温退火过程中归一化储能模量、损耗模量和内耗tanδ随退火时间的演化 (退火温度为373 K)

    Fig. 5.  Evolution of the normalized storage modulus, loss modulus and internal friction with annealing time in annealing process (annealing temperature is 373 K).

    图 6  铸态和退火态La62Cu12Ni12Al14非晶合金的归一化损耗模量随温度的演化

    Fig. 6.  Temperature dependent normalized loss modulus in La62Cu12Ni12Al14 amorphous alloy at different states: as-cast state and annealed state.

    图 7  (a) 铸态和退火态La62Cu12Ni12Al14非晶合金XRD衍射图; (b) 铸态和退火态La62Cu12Ni12Al14非晶合金蠕变曲线. 测试温度为390 K, 施加应力为60 MPa, 图中实线为KWW方程拟合曲线

    Fig. 7.  (a) XRD patterns of La62Cu12Ni12Al14 amorphous alloy with different states, as-cast state and annealed state; (b) creep deformation process of La62Cu12Ni12Al14 amorphous alloy with different states, as-cast state and annealed state. The measurement temperature is 373 K and the applied stress is 50 MPa, the solid lines denote KWW fitted curves.

    图 8  La62Cu12Ni12Al14非晶合金储能模量和损耗模量随温度的演化, 符号代表实验数据, 实线代表 (5b) 式计算数据

    Fig. 8.  Evolution of the normalized storage modulus and loss modulus with temperature of La62Cu12Ni12Al14 amorphous alloy. Symbols represent the experimental data, solid line represents the calculated data of the Eq. (5b).

    图 9  (a)单轴拉伸回复实验过程中La62Cu12Ni12Al14非晶合金的时间-真实应变曲线; (b)实验过程中La62Cu12Ni12Al14非晶合金的真实应力-真实应变曲线, 符号为实验数据, 曲线为(5a)式计算得到

    Fig. 9.  (a) True strain-tine curve of La62Cu12Ni12Al14 amorphous alloy in uniaxial tensile and recovery experiment; (b) true stress-true strain curve of La62Cu12Ni12Al14 amorphous alloy, symbols represent the experimental data, solid line represents the calculated data of Eq. (5a).

    图 10  La62Cu12Ni12Al14非晶合金在415 K时应变率跳跃拉伸实验真实应力-真实应变曲线

    Fig. 10.  True stress-true strain curve of La62Cu12Ni12Al14 amorphous alloy by strain jump tensile experiment at 415 K.

    图 11  La62Cu12Ni12Al14非晶合金在不同温度时名义黏度η随应变速率$ \dot{\varepsilon } $的关系

    Fig. 11.  Correlation between the nominal viscosity η and the strain rate $ \dot{\varepsilon } $ of La62Cu12Ni12Al14 amorphous alloy at different temperature.

    图 12  采用扩展指数方程(a)和QPD理论(b)描述La62Cu12Ni12Al14非晶合金归一化黏度主曲线 (参考温度为 405 K)

    Fig. 12.  Master curve of the normalized viscosity of La62Cu12Ni12Al14 amorphous alloy was described by the KWW equation (a) and QPD theory (b) (reference temperature is 405 K).

    Baidu
  • [1]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211Google Scholar

    [2]

    Greer A L 1995 Science 267 1947Google Scholar

    [3]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [4]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [5]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar

    Qiao J C, Zhang L T, Tong Y, Lü G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar

    [6]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [7]

    Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [8]

    王峥, 汪卫华 2017 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [9]

    Johari G P 2002 J. Non-Cryst. Solids 307 317

    [10]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [11]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [12]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [13]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar

    [14]

    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar

    [15]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar

    [16]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T 2020 Acta Mater. 200 42Google Scholar

    [17]

    Fan Y, Iwashita T, Egami T 2014 Nat. Commun. 5 5083Google Scholar

    [18]

    Wang N, Ding J, Yan F, Asta M, Ritchie R O, Li L 2018 npj Comput. Mater. 4 19Google Scholar

    [19]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar

    [20]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [21]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [22]

    Argon A S, Kuo H Y 1979 Mat. Sci. Eng. 39 101Google Scholar

    [23]

    Cavaille J, Perez J, Johari G 1989 Phys. Rev. B 39 2411Google Scholar

    [24]

    Guo J, Joo S H, Pi D, Kim W, Song Y, Kim H S, Zhang X, Kong D 2019 Adv. Eng. Mater. 21 1800918Google Scholar

    [25]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [26]

    Yang Q, Peng S X, Wang Z, Yu H B 2020 Natl. Sci. Rev. 7 1896Google Scholar

    [27]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 2204Google Scholar

    [28]

    Qiao J C, Chen Y H, Casalini R, Pelletier J M, Yao Y 2019 J. Mater. Sci. Tech 35 982Google Scholar

    [29]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201Google Scholar

    [30]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123Google Scholar

    [31]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar

    [32]

    Qiao J C, Pelletier J M 2012 J. Appl. Phys. 112 083528Google Scholar

    [33]

    Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001Google Scholar

    [34]

    Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China: Phys. , Mech. Astron. 64 1

    [35]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203Google Scholar

    [36]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [37]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [38]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [39]

    Argon A S 1979 Acta Metall. 27 47Google Scholar

    [40]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar

    [41]

    Langer J S 2015 Phys. Rev. E 92 012318Google Scholar

    [42]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar

    [43]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [44]

    Palmer R G, Stein D L, Abrahams E, Anderson P W 1984 Phys. Rev. Lett. 53 958Google Scholar

    [45]

    Gauthier C, Pelletier J M, David L, Vigier G, Perez J 2000 J. Non-Cryst. Solids 274 181Google Scholar

    [46]

    Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar

    [47]

    Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C, Khonik V A 2019 J. Non-Cryst. Solids 521 119474Google Scholar

    [48]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V 2020 Chin. Phys. B 29 086402Google Scholar

    [49]

    Tao K, Khonik V A, Qiao J C 2023 Int. J. Mech. Sci. 240 107941Google Scholar

    [50]

    Qiao J C, Pelletier J M 2012 Intermetallics 28 40Google Scholar

    [51]

    Qiao J C, Casalini R, Pelletier J M 2014 J. Chem. Phys. 141 104510

    [52]

    Perez J, Cavaille J Y, Etienne S, Jourdan C 1988 Rev. Phys. Appl. 23 125Google Scholar

    [53]

    Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. J. Nonlin. Mech 46 496Google Scholar

    [54]

    Bruns M, Hassani M, Varnik F, Hassanpour A, Divinski S, Wilde G 2021 Phys. Rev. Res. 3 013234Google Scholar

    [55]

    Zhang C, Qiao J C, Pelletier J M, Yao Y 2017 Intermetallics 86 88Google Scholar

    [56]

    Kawamura Y, Inoue A 2000 Appl. Phys. Lett. 77 1114Google Scholar

    [57]

    郝奇, 乔吉超, Pelletier J M 2020 力学学报 52 360Google Scholar

    Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar

    [58]

    Perez J 1998 Physics and Mechanics of Amorphous Polymers (Routledge, London) pp55–65

    [59]

    Pelletier J M, Van de Moortèle B, Lu I 2002 Mat. Sci. Eng. A 336 190Google Scholar

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为.  , 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛.  , 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [4] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响.  , 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [5] 程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超. 基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化.  , 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [6] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学.  , 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [7] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究.  , 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [9] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体.  , 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [10] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状.  , 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [11] 柳延辉. 非晶合金的高通量制备与表征.  , 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [12] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [13] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀.  , 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [14] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [15] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [16] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂.  , 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [17] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究.  , 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [18] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟.  , 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [19] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化.  , 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [20] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究.  , 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
计量
  • 文章访问数:  2026
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-11-20
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-02-20

/

返回文章
返回
Baidu
map