Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An information diffusion dynamic model based on social influence and mean-field theory

Xiao Yun-Peng Li Song-Yang Liu Yan-Bing

Citation:

An information diffusion dynamic model based on social influence and mean-field theory

Xiao Yun-Peng, Li Song-Yang, Liu Yan-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of online social networks, they rapidly become an ideal platform for information about social information diffusion, commodity marketing, shopping recommendation, opinion expression and social consensus. The social network information propagation has become a research hotspot correspondingly. Meanwhile, information diffusion contains complex dynamic genesis in online social networks. In view of the diversity of information transmission, the efficiency of propagation and the convenience of interaction, it is very important to regulate the accuracy, strengthen the public opinion monitoring and formulating the information control strategy. The purpose of this study is to quantify the intensity of the influence, especially provides a theoretical basis for studying the state transition of different user groups in the evolution process. As existing epidemic model paid less attention to influence factors and previous research about influence calculation mainly focused on static network topology but ignored individual behavior characteristics, we propose an information diffusion dynamics model based on dynamic user behaviors and influence. Firstly, according to the multiple linear regression model, we put forward a method to analyze internal and external factors for influence formation from two aspects:personal memory and user interaction. Secondly, for a similar propagation mechanism of information diffusion and epidemics spreading, in this paper we present an improved SIR model based on mean-field theory by introducing influence factor. The contribution of this paper can be summarized as follows. 1) For the influence quantification, different from the current research work that mainly focuses on network structure, we integrate the internal factors and external factors, and propose a user influence evaluation method based on the multiple linear regression model. The individual memory principle is analyzed by combining user attributes and individual behavior. User interaction is also studied by using the shortest path method in graph theory. 2) On modeling the information diffusion, by referring SIR model, we introduce the user influence factor as the parameter of the state change into the epidemic model. The mean-field theory is used to establish the differential equations. Subsequently, the novel information diffusion dynamics model and verification method are proposed. The method avoids the randomness of the artificial setting parameters within the model, and reveals the nature of multi-factors coupling in the information transmission. Experimental results show that the optimized model can comprehend the principle and information diffusion mechanism of social influence from a more macroscopic level. The study can not only explain the internal and external dynamics genesis of information diffusion, but also explore the behavioral characteristics and behavior laws of human. In addition, we try to provide theoretical basis for situation awareness and control strategy of social information diffusion.
      Corresponding author: Xiao Yun-Peng, xiaoyp@cqupt.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB329606), the National Natural Science Foundation of China (Grant No. 61272400), the Chongqing Youth Innovative Talent Project, China (Grant No. cstc2013kjrc-qnrc40004), the Foundation of Ministry of Education of China and China Mobile (Grant No. MCM20130351), the Chongqing Graduate Research and Innovation Project, China (Grant No. CYS14146), the Science and Technology Research Program of the Chongqing Municipal Education Committee, China (Grant No. KJ1500425), the WenFeng Foundation of Chongqing University of Post and Telecommunications, China (Grant No. WF201403).
    [1]

    Cai M, Du H F, Feldman M W 2014 Acta Phys. Sin. 63 060504 (in Chinese)[蔡萌, 杜海峰, Feldman M W 2014 63 060504]

    [2]

    Zhou B, He Z, Jiang L L, Wang N X, Wang B H 2014 Sci. Rep. 4 7577

    [3]

    Huang J, Li C, Wang W Q, Shen H W, Li G, Cheng X Q 2014 Sci. Rep. 4 5334

    [4]

    Zheng M, L L, Zhao M 2013 Phys. Rev. E 88 012818

    [5]

    Chen D B, Huang S, Shang M S 2011 Comput. Sci. 38 118 (in Chinese)[陈端兵, 黄晟, 尚明生2011计算机科学38 118]

    [6]

    Chen D B, Gao H 2012 Chin. Phys. Lett. 29 048901

    [7]

    Borge-Holthoefer J, Moreno Y 2012 Phys. Rev. E 85 026116

    [8]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese)[王超, 刘骋远, 胡远萍, 刘志宏, 马建峰2014 63 180501]

    [9]

    Lu W, Chen W, Lakshmanan L V S 2015 Proceedings of the VLDB Endowment Hawaii, USA, August 31-September 4, 2015 p60

    [10]

    Elias Boutros K, Dilkina B, Song L 2014 Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining New York, USA, August 24-27, 2014 p1226

    [11]

    Singer Y 2012 Proceedings of the Fifth ACM International Conference on Web Search and Data Mining Washington, USA, February 8-12, 2012 p733

    [12]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [13]

    Montanari A, Saberi A 2010 Proc. Natl. Acad. Sci. 107 20196

    [14]

    Yuan X P, Xue Y K, Liu M X 2013 Chin. Phys. B 22 030207

    [15]

    Pastor-Satorras R, Castellano C, van Mieghe P, Vespignani A 2015 Rev. Mod. Phys. 87 925

    [16]

    Kempe D, Jon K, Éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24-27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79

    [18]

    Li C H, Tsai C C, Yang S Y 2014 Commun. Nonlinear Sci. 19 1042

    [19]

    Chen L, Sun J 2014 Physica A 410 196

    [20]

    Xiong F, Liu Y, Zhang Z J, Zhu J, Zhang Y 2012 Phys. Lett. A 376 2103

    [21]

    Li T, Wang Y, Guan Z H 2014 Commun. Nonlinear Sci. 19 686

    [22]

    Xiong F, Wang X M, Cheng J J 2016 Chin. Phys. B 25 108904

    [23]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [24]

    Hu Q C, Zhang Y, Xu X H, Xing C X, Chen C, Chen X H 2015 Acta Phys. Sin. 64 190101 (in Chinese)[胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢2015 64 190101]

    [25]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [26]

    Wu Y, Yang Y, Jiang F, Jin S, Xu J 2014 Physica A 416 467

    [27]

    Liben-Nowell D, Kleinberg J 2008 Proc. Natl. Acad. Sci. 105 4633

    [28]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [29]

    Myers S A, Zhu C, Leskovec J 2012 Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Beijing, China, August 12-16, 2012 p33

    [30]

    Aral S, Walker D 2012 Science 337 337

    [31]

    La Fond T, Neville J 2010 Proceedings of the 19th International Conference on World Wide Web Raleigh, USA, April 26-30, 2010 p601

    [32]

    Li P, Zhang J, Xu X K, Small M 2012 Chin. Phys. Lett. 29 048903

    [33]

    Newman, M E J 2012 Nat. Phys. 8 25

    [34]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [35]

    Pedroche F, Moreno F, González A, Valencia A 2013 Math. Comput. Model 57 1891

  • [1]

    Cai M, Du H F, Feldman M W 2014 Acta Phys. Sin. 63 060504 (in Chinese)[蔡萌, 杜海峰, Feldman M W 2014 63 060504]

    [2]

    Zhou B, He Z, Jiang L L, Wang N X, Wang B H 2014 Sci. Rep. 4 7577

    [3]

    Huang J, Li C, Wang W Q, Shen H W, Li G, Cheng X Q 2014 Sci. Rep. 4 5334

    [4]

    Zheng M, L L, Zhao M 2013 Phys. Rev. E 88 012818

    [5]

    Chen D B, Huang S, Shang M S 2011 Comput. Sci. 38 118 (in Chinese)[陈端兵, 黄晟, 尚明生2011计算机科学38 118]

    [6]

    Chen D B, Gao H 2012 Chin. Phys. Lett. 29 048901

    [7]

    Borge-Holthoefer J, Moreno Y 2012 Phys. Rev. E 85 026116

    [8]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese)[王超, 刘骋远, 胡远萍, 刘志宏, 马建峰2014 63 180501]

    [9]

    Lu W, Chen W, Lakshmanan L V S 2015 Proceedings of the VLDB Endowment Hawaii, USA, August 31-September 4, 2015 p60

    [10]

    Elias Boutros K, Dilkina B, Song L 2014 Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining New York, USA, August 24-27, 2014 p1226

    [11]

    Singer Y 2012 Proceedings of the Fifth ACM International Conference on Web Search and Data Mining Washington, USA, February 8-12, 2012 p733

    [12]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [13]

    Montanari A, Saberi A 2010 Proc. Natl. Acad. Sci. 107 20196

    [14]

    Yuan X P, Xue Y K, Liu M X 2013 Chin. Phys. B 22 030207

    [15]

    Pastor-Satorras R, Castellano C, van Mieghe P, Vespignani A 2015 Rev. Mod. Phys. 87 925

    [16]

    Kempe D, Jon K, Éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24-27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79

    [18]

    Li C H, Tsai C C, Yang S Y 2014 Commun. Nonlinear Sci. 19 1042

    [19]

    Chen L, Sun J 2014 Physica A 410 196

    [20]

    Xiong F, Liu Y, Zhang Z J, Zhu J, Zhang Y 2012 Phys. Lett. A 376 2103

    [21]

    Li T, Wang Y, Guan Z H 2014 Commun. Nonlinear Sci. 19 686

    [22]

    Xiong F, Wang X M, Cheng J J 2016 Chin. Phys. B 25 108904

    [23]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [24]

    Hu Q C, Zhang Y, Xu X H, Xing C X, Chen C, Chen X H 2015 Acta Phys. Sin. 64 190101 (in Chinese)[胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢2015 64 190101]

    [25]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [26]

    Wu Y, Yang Y, Jiang F, Jin S, Xu J 2014 Physica A 416 467

    [27]

    Liben-Nowell D, Kleinberg J 2008 Proc. Natl. Acad. Sci. 105 4633

    [28]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [29]

    Myers S A, Zhu C, Leskovec J 2012 Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Beijing, China, August 12-16, 2012 p33

    [30]

    Aral S, Walker D 2012 Science 337 337

    [31]

    La Fond T, Neville J 2010 Proceedings of the 19th International Conference on World Wide Web Raleigh, USA, April 26-30, 2010 p601

    [32]

    Li P, Zhang J, Xu X K, Small M 2012 Chin. Phys. Lett. 29 048903

    [33]

    Newman, M E J 2012 Nat. Phys. 8 25

    [34]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [35]

    Pedroche F, Moreno F, González A, Valencia A 2013 Math. Comput. Model 57 1891

  • [1] Wang Nan, Xiao Min, Jiang Hai-Jun, Huang Xia. Rumor propagation dynamics in social networks under the influence of time delay and diffusion. Acta Physica Sinica, 2022, 71(18): 180201. doi: 10.7498/aps.71.20220726
    [2] Li Xin, Zhao Cheng-Li, Liu Yang-Yang. Distinguishing node propagation influence by expected index of finite step propagation range. Acta Physica Sinica, 2020, 69(2): 028901. doi: 10.7498/aps.69.20191313
    [3] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [4] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [5] Hu Qing-Cheng, Zhang Yong, Xu Xin-Hui, Xing Chun-Xiao, Chen Chi, Chen Xin-Hua. A new approach for influence maximization in complex networks. Acta Physica Sinica, 2015, 64(19): 190101. doi: 10.7498/aps.64.190101
    [6] Wang Jin-Long, Liu Fang-Ai, Zhu Zhen-Fang. An information spreading model based on relative weight in social network. Acta Physica Sinica, 2015, 64(5): 050501. doi: 10.7498/aps.64.050501
    [7] Wang Xiao-Juan, Song Mei, Guo Shi-Ze, Yang Zi-Long. Information spreading in correlated microblog reposting network based on directed percolation theory. Acta Physica Sinica, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [8] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [9] Wang Ya-Qi, Wang Jing, Yang Hai-Bin. An evolution model of microblog user relationship networks based on complex network theory. Acta Physica Sinica, 2014, 63(20): 208902. doi: 10.7498/aps.63.208902
    [10] Liu Shu-Xin, Ji Xin-Sheng, Liu Cai-Xia, Guo Hong. A complex network evolution model for network growth promoted by information transmission. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [11] Wu Teng-Fei, Zhou Chang-Le, Wang Xiao-Hua, Huang Xiao-Xi, Chen Zhi-Qun, Wang Rong-Bo. Microblog propagation network model based on mean-field theory. Acta Physica Sinica, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [12] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [13] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [14] Xiong Xi, Hu Yong. Research on the dynamics of opinion spread based on social network services. Acta Physica Sinica, 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
    [15] Song Yu-Rong, Jiang Guo-Ping, Xu Jia-Gang. An epidemic spreading model in adaptive networks based on cellular automata. Acta Physica Sinica, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [16] Zhang Yan-Chao, Liu Yun, Zhang Hai-Feng, Cheng Hui, Xiong Fei. The research of information dissemination model on online social network. Acta Physica Sinica, 2011, 60(5): 050501. doi: 10.7498/aps.60.050501
    [17] Zheng Rong-Sen, Lü Ji-Er, Zhu Liu-Hua, Chen Shi-Dong, Pang Shou-Quan. Intersection effects of arterial road for traffic flow. Acta Physica Sinica, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [18] Li Ming-Jie, Wu Ye, Liu Wei-Qing, Xiao Jing-Hua. Short message spreading in complex networks and longevity of short message. Acta Physica Sinica, 2009, 58(8): 5251-5258. doi: 10.7498/aps.58.5251
    [19] Wang Yan, Zheng Zhi-Gang. Spreading dynamics on scale-free networks. Acta Physica Sinica, 2009, 58(7): 4421-4425. doi: 10.7498/aps.58.4421
    [20] Xie Yan-Bo, Wang Bing-Hong, Quan Hong-Jun, Yang Wei-Song, Wang Wei-Ning. Finite size effect in EZ model. Acta Physica Sinica, 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
Metrics
  • Abstract views:  8583
  • PDF Downloads:  850
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2016
  • Accepted Date:  18 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map