Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase

Chen Xue-Lian Jiao Hu-Po Shen Yan-Bing Pan Xi-Qiang

Citation:

Preparation and formation process of high efficient and stable CsPbBr3-Cs4PbBr6 nanocrystals with mixed phase

Chen Xue-Lian, Jiao Hu-Po, Shen Yan-Bing, Pan Xi-Qiang
PDF
HTML
Get Citation
  • CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are prepared by adding the mixture ligand of oleylamine and tetradecyl-phosphonic acid (OLA-TDPA) to CsPbBr3 perovskite nanocrystals through ligand post-treatment. The structure, the morphology, optical property and the stability of CsPbBr3-Cs4PbBr6 dual-phase nanocrystals are characterized by X-ray diffraction, transmission electron microscopy (high-resolution TEM), UV-vis spectrophotometer, fluorescence spectrophotometer, and transient fluorescence spectrophotometer. The as-obtained nanocrystals have a high photoluminescence quantum yield of 78% and long fluorescence lifetime of 476 ns when prepared at the optimal molar ratio of CsPbBr3, TDPA and OLA (1∶1∶15). Moreover, the nanocrystal is quite stable at room temperature for at least 25 days, and has a good thermal stability in five heating-cooling cycles at temperature in a range between 293 K and 328 K. The formation of dual-phase nanocrystals go through two stages of surface passivation/dissolution and recrystallization to generate CsPbBr3-Cs4PbBr6 nanocrystals. In the first stage (t ≤ 1 h), the m OLA-TDPA mixing ligand can form (RNH3)2PO3 X type ligand and exchanges with [RNH3]+-[RCOO] at the surface of CsPbBr3 nanocrystals, which can effectively passivate surface defects by strong interaction with Pb2+ and high ligand content at surface, thus improving the quantum yield and fluorescence life of CsPbBr3 nanocrystals with spherical shape. In the second stage, with the increase of reaction time, PbBr2 partially dissolves from the surface of CsPbBr3 nanocrystals, then some CsPbBr3 nanocrystals transform into lead-depleted Cs4PbBr6 nanocrystals with hexagonal phase, thus improving the stability of nanocrystals. This work has a certain reference value for promoting the applications of high efficient and stable perovskite nanocrystals.
      Corresponding author: Chen Xue-Lian, chenxl@xsyu.edu.cn ; Pan Xi-Qiang, pxq2336@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104191) and the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University, China (Grant No. YCS21112073).
    [1]

    Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar

    [2]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [3]

    陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 71 096802Google Scholar

    Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar

    [4]

    Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar

    [5]

    Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar

    [6]

    Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [7]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [8]

    林月明, 巨博, 李燕, 陈雪莲 2021 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [9]

    Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar

    [10]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [11]

    De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar

    [12]

    Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar

    [13]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [14]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [15]

    Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar

    [16]

    Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [17]

    Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar

    [18]

    Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar

    [19]

    Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar

    [20]

    Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar

    [21]

    Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar

    [22]

    Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar

    [23]

    Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar

    [24]

    Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar

    [25]

    Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar

    [26]

    Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar

    [27]

    Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar

    [28]

    Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar

    [29]

    Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar

    [30]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [31]

    Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar

    [32]

    Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar

    [33]

    Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar

    [34]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [35]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [36]

    Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar

    [37]

    Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar

    [38]

    Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar

    [39]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar

    [40]

    Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar

  • 图 1  CsPbBr3 NCs和OLA-TDPA-PNCs的 X 射线衍射图

    Figure 1.  X-ray diffraction patterns of CsPbBr3 NCs and OLA-TDPA-PNCs.

    图 2  CsPbBr3 NCs的TEM图像(a)及其对应的HRTEM图(b); OLA-TDPA-PNCs 的TEM图像(c)及其对应的HRTEM图(d)和(e)

    Figure 2.  TEM image of CsPbBr3 NCs (a) and the corresponding HRTEM image (b); TEM image of OLA-TDPA-PNCs (c) and the corresponding HRTEM images (d) and (e).

    图 3  (a) CsPbBr3 NCs和OLA-TDPA-PNCs在日光照射(上)和365 nm紫外照射下(下)的实物照片; CsPbBr3 NCs和OLA-TDPA-PNCs 的PL图谱(b)、UV-vis图谱(c)和时间衰减曲线(d)

    Figure 3.  (a) Photographs of CsPbBr3 NCs and OLA-TDPA-PNCs under ambient light (top) and 365 nm UV irradiation (bottom); PL spectra (b), UV-vis absorption spectra (c), and time-resolved PL decay curves (d) of pristine CsPbBr3 NCs and OLA-TDPA-PNCs in hexane.

    图 4  (a)在紫外灯的连续照射下, CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度随光照时间的变化; (b)在常温密封条件下连续监测CsPbBr3 NCs和OLA-TDPA-PNCs的相对PL强度, 持续时间长达26 d; (c) CsPbBr3 NCs和OLA-TDPA-PNCs在298—328 K时的相对PL强度变化; (d) OLA-TDPA-PNCs在经历5次加热-冷却循环的相对PL强度变化

    Figure 4.  Variations of relative PL intensity of pristine CsPbBr3 NCs and OLA-TDPA-PNCs under continuous UV 365 nm illumination (a); and stored under ambient conditions with sealing (b). Change of relative PL intensity of CsPbBr3 NCs and OLA-TDPA-PNCs between 298 and 328 K (c); change of relative PL intensity of OLA-TDPA-PNCs recorded during 5 heating-cooling cycles between 298 and 328 K (d).

    图 5  OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs和CsPbBr3 NCs的FTIR光谱 (a) 800—1800 cm–1; (b) 2000—3500 cm–1

    Figure 5.  FTIR spectra of OLA, TDPA, OLA-TDPA , OLA-TDPA-PNCs, TDPA-PNCs and CsPbBr3 NCs at 800–1800 cm–1 (a) and (b) 2000–3500 cm–1

    图 6  OLA-TDPA-PNCs (上), TDPA-PNCs (中)和CsPbBr3 NCs (下)的XPS光谱图全谱(a), 以及Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e), P 2p (f)的XPS核级谱

    Figure 6.  Survey XPS spectra (a), XPS core level spectra of Cs 3d (b), Pb 4f (c), Br 3d (d), N 1s (e) and P 2p (f) of OLA-TDPA-PNCs (top), TDPA-PNCs (middle) and CsPbBr3 NCs (bottom).

    图 7  OLA-TDPA- PNCs随时间变化的光学监测 (a) UV-vis吸收光谱; (b)荧光光谱, 内插图为纳米晶在1—96 h间的荧光光谱图

    Figure 7.  Optical monitoring of the OLA-TDPA- PNCs over time: (a) UV-vis absorption spectra; (b) PL spectra, inset shows the PL spectra of OLA-TDPA- PNCs between 1 and 96 h.

    表 1  CsPbBr3 NCs和OLA-TDPA-PNCs的荧光寿命拟合

    Table 1.  Lifetime and fractional contribution of different decay channels for samples of CsPbBr3 NCs and OLA-TDPA-PNCs.

    Sampleτ1/nsτ2/nsτ3/nsKnr/(106 s–1)Kr/(106 s–1)Knr/Krτavg/nsPLQY/%
    CsPbBr3 NCs6.8342.13277.425.480.975.6515515
    OLA-TDPA-PNCs12.5679.07824.810.471.640.2947678
    DownLoad: CSV
    Baidu
  • [1]

    Uddin M A, Mobley J K, Masud A A, Liu T, Calabro R L, Kim D Y, Richards C I, Graham K R 2019 J. Phys. Chem. C 123 18103Google Scholar

    [2]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [3]

    陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁 2022 71 096802Google Scholar

    Chen X L, Ju B, Jiao H P, Li Y, Zhong Y J 2022 Acta Phys. Sin. 71 096802Google Scholar

    [4]

    Meyns M, Peralvarez M, Heuer-Jungemann A, Hertog W, Ibanez M, Nafria R, Genc A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G 2016 ACS Appl. Mater. Interfaces 8 19579Google Scholar

    [5]

    Liu P Z, Chen W, Wang W G, Xu B, Wu D, Hao J J, Cao W Y, Fang F, Li Y, Zeng Y Y, Pan R K, Chen S M, Cao W Q, Sun X W, Wang K 2017 Chem. Mater. 29 5168Google Scholar

    [6]

    Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J 2019 Chem. Mater. 31 3917Google Scholar

    [7]

    Wang Y R, Zhang M, Xiao K, Lin R X, Luo X, Han Q L, Tan H R 2020 J. Semicond. 41 051201Google Scholar

    [8]

    林月明, 巨博, 李燕, 陈雪莲 2021 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [9]

    Li J Z, Dong H X, Xu B, Zhang S F, Cai Z P, Wang J, Zhang L 2017 Photonics Res. 5 457Google Scholar

    [10]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [11]

    De Roo J, De Keukeleere K, Hens Z, Van Driessche I 2016 Dalton Trans. 45 13277Google Scholar

    [12]

    Xiao M, Hao M, Lyu M, Moore E G, Zhang C, Luo B, Hou J, Lipton-Duffin J, Wang L 2019 Adv. Funct. Mater. 29 1905683Google Scholar

    [13]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [14]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [15]

    Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z, Bakr O M 2018 J. Am. Chem. Soc. 140 562Google Scholar

    [16]

    Bi C H, Kershaw S V, Rogach A L, Tian J J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [17]

    Park S, Cho H, Choi W, Zou H, Jeon D Y 2019 Nanoscale Adv. 1 2828Google Scholar

    [18]

    Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W 2017 Adv. Funct. Mater. 28 1704288Google Scholar

    [19]

    Qiao B, Song P J, Cao J, Zhao S L, Shen Z, Di G, Liang Z Q, Xu Z, Song D, Xu X R 2017 Nano Energy 28 445602Google Scholar

    [20]

    Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X, Yang Z, Sargent E H 2017 Adv. Mater. 29 1605945Google Scholar

    [21]

    Palazon F, Dogan S, Marras S, Locardi F, Nelli I, Rastogi P, Ferretti M, Prato M, Krahne R, Manna L 2017 J. Phys. Chem. C 121 11956Google Scholar

    [22]

    Liang W C, Li T, Zhu C C, Guo L D 2022 Optik 267 169705Google Scholar

    [23]

    Peng X G, Chen J, Wang F C, Zhang C Y, Yang B B 2020 Optik 208 164579Google Scholar

    [24]

    Su Y, Zeng Q H, Chen X J, Ye W G, She L S, Gao X M, Ren Z Y, Li X M 2019 J. Mater. Chem. C 7 7548Google Scholar

    [25]

    Akkerman Q A, Abdelhady A L, Manna L 2018 J. Phys. Chem. Lett. 9 2326Google Scholar

    [26]

    Nie Z H, Gao X Z, Ren Y J, Xia S Y, Wang Y H, Shi Y L, Zhao J, Wang Y 2020 Nano Lett. 20 4610Google Scholar

    [27]

    Natalia R, Mingrui Y, Paul G, Natalia K, Pavel M, Eckard H, Luis R R, Dmitry P, Dmitriy K, Zamkov M 2018 Chem. Mater. 30 1391Google Scholar

    [28]

    Akkerman Q A, Park S, Radicchi E, Nunzi F, Mosconi E, De Angelis F, Brescia R, Rastogi P, Prato M, Manna L 2017 Nano Lett. 17 1924Google Scholar

    [29]

    Li F, Liu Y, Wang H L, Zhan Q, Liu Q L, Xia Z G 2018 Chem. Mater. 30 8546Google Scholar

    [30]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [31]

    Liang Z Q, Zhao S L, Xu Z, Qiao B, Song P J, Gao D, Xu X R 2016 ACS Appl. Mater. Interfaces 8 28824Google Scholar

    [32]

    Vallés-Pelarda M, Gualdrón-Reyes A F, Felip-León C, Angulo-Pachón C A, Agouram S, Muñoz-Sanjosé V, Miravet J F, Galindo F, Mora-Seró I 2021 Adv. Opt. Mater. 9 2001786Google Scholar

    [33]

    Xuan T T, Yang X F, Lou S Q, Huang J J, Liu Y, Yu J B, Li H L, Wong K L, Wang C X, Wang J 2017 Nanoscale 9 15286Google Scholar

    [34]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [35]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [36]

    Luschtinetz R, Seifert G, Jaehne E, Adler H J P 2007 Macromol. Symp. 254 248Google Scholar

    [37]

    Son J G, Choi E, Piao Y, Han S W, Lee T G J N 2016 Nanoscale 8 4573Google Scholar

    [38]

    Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X 2023 Small 19 2205950Google Scholar

    [39]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 310Google Scholar

    [40]

    Liu Z, Bekenstein Y, Orcid X Y, Nguyen S C, Orcid J S, Orcid D Z, Lee S T, Orcid P Y, Orcid W M, Alivisatos A P 2017 J. Am. Chem. Soc. 139 5309Google Scholar

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] Chen Xue-Lian, Shen Yan-Bing, Yuan Zhi-Cong, Li Kai-Rui, Pan Xi-Qiang. Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 composite nanocrystals and in-situ study of phase transformation process. Acta Physica Sinica, 2024, 73(9): 096801. doi: 10.7498/aps.73.20240247
    [4] Meng Jing, Gao Bo-Wen. Photovoltaic performance of novel Perovskite/organic integrated solar cells with high efficiency and high stability. Acta Physica Sinica, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [5] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [6] Sun Xue, Huang Feng, Liu Gui-Xiong, Su Zi-Sheng. Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector. Acta Physica Sinica, 2022, 71(17): 178102. doi: 10.7498/aps.71.20220189
    [7] Zhao Song, Zhou Hua, Wang Shu-Ying, Han Fei, Jiang Si-Han, Shen Xiang-Qian. Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [8] Chen Xue-Lian, Ju Bo, Jiao Hu-Po, Li Yan, Zhong Yu-Jie. Preparation of CsPbBr3 perovskite nanocrystals with controllable morphology and in-situ photoluminescence of formation kinetics. Acta Physica Sinica, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [9] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [10] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [11] Design of high efficiency perovskite/silicon tandem solar cells based on the plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211585
    [12] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [13] Liu Xiao-Bing, Guo Ruo-Tong, Zhong Yu-Xuan, Zhao Li-Xin, Shi Hao-Nan, Liu Li-Juan. Ligand with strong electronegativity induced blue emitting of CsPbBr3 nanocrystals. Acta Physica Sinica, 2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
    [14] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [15] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [16] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [17] Liu Na, Wei Yang, Ma Xin-Guo, Zhu Lin, Xu Guo-Wang, Chu Liang, Huang Chu-Yun. Theoretical study on the stability and photoelectric properties of APbI3 perovskite. Acta Physica Sinica, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [18] Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei. Effect of solvent on the perovskite thin film morphology and crystallinity. Acta Physica Sinica, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [20] Liu Yan-Yan, Liu Fa-Min, Shi Xia, Ding Peng, Zhou Chuan-Cang. Preparation, structure and ferromagnetic properties of perovskite BaFeO3 nanocrystals. Acta Physica Sinica, 2008, 57(11): 7274-7278. doi: 10.7498/aps.57.7274
  • supplement 097801-20230066补充材料.pdf supplement
Metrics
  • Abstract views:  4576
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2023
  • Accepted Date:  22 March 2023
  • Available Online:  06 April 2023
  • Published Online:  05 May 2023

/

返回文章
返回
Baidu
map