Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of magnetoplasmons in graphene rings with two-dimensional finite element method

Wang Wei-Hua

Citation:

Study of magnetoplasmons in graphene rings with two-dimensional finite element method

Wang Wei-Hua
PDF
HTML
Get Citation
  • Graphene plasmons are important collective excitations in graphene, which play a key role in determining the optical properties of graphene. They have quite lots of unique features in comparison with classical plasmons in noble metals. Of them, the active tunability is the most attractive, which is realized by external gating (equivalently electric field). As is well known, graphene also has strong magnetic response (e.g. room temperature quantum Hall effect), so magnetic field can act as another degree of freedom for actively tuning graphene plasmons, with the new quasi particles being so-called graphene magneto-plasmons. Because of the two-dimensional nature of graphene, the numerical studies (or full wave simulations) of graphene magneto-plasmons are usually carried out through a three-dimensional approximation, e.g. treating two-dimensional graphene as a very thin three-dimensional film. Actually, this treatment takes quite some time and requires high memory consumption. Herein, starting from Coulomb law and charge conservation law, we propose an alternative numerical method, namely, two-dimensional finite element method, to solve this problem. All the calculations are now performed in two-dimensional graphene plane, and the usual three-dimensional approximation is not required. To characterize the excitations of graphene magneto-plasmons, the eigenvalue loss spectrum is introduced. Based on this method, graphene magneto-plasmons in graphene rings of four kinds are investigated. The strongest magneto-optic effect is observed in circular ring, which is consistent with its highest rotational symmetry. In all the rings, the lowest dipolar graphene magneto-plasmon always supports symmetric mode splitting, which can be further modified by the interaction between inner edge and outer edge of ring. As the hole size is very small, the edge current confined to the outer edge dominates, and that confined to the inner edge can be ignored; while increasing the hole size, the interaction between these two edges increases, which results in the reduction of the symmetric mode splitting; when the hole size is larger than a critical value, the symmetric mode splitting will disappear.
      Corresponding author: Wang Wei-Hua, wh.wang@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174440).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [4]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [5]

    Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U 2011 Nano Lett. 11 2219Google Scholar

    [6]

    Senanayake P, Hung C, Shapiro J, Lin A, Liang B, Williams B S, Huffaker D L 2011 Nano Lett. 11 5279Google Scholar

    [7]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [8]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar

    [9]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [10]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [11]

    Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726Google Scholar

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Phton. 3 388Google Scholar

    [13]

    Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044Google Scholar

    [14]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [15]

    周利, 王取泉 2019 68 147301Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [16]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [17]

    Khurgin J B 2015 Nat. Nanotech. 10 2Google Scholar

    [18]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [19]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [20]

    Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J 2014 ACS Nano 8 834Google Scholar

    [21]

    Loa I, Syassen K, Monaco G, Vanko G, Krisch M, Hanfland M 2011 Phys. Rev. Lett. 107 086402Google Scholar

    [22]

    Fedyanin D Y, Yakubovsky D I, Kirtaev R V, Volkov V S 2016 Nano Lett. 16 326Google Scholar

    [23]

    Taliercio T, Biagioni P 2019 Nanophotonics 8 949Google Scholar

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [25]

    Frank I W, Tanenbaum D M, Van der Zande A M, McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558Google Scholar

    [26]

    Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N 2009 ACS Nano 3 3884Google Scholar

    [27]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Comps. Sci. Technol. 72 1459Google Scholar

    [28]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [29]

    Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [30]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [31]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [32]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [33]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297Google Scholar

    [34]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [35]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [36]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [37]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [39]

    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [40]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Bnerjee S K, Colombo L 2014 Nat. Nanotechonl. 9 768Google Scholar

    [41]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318Google Scholar

    [43]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [44]

    Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A H 2008 Phys. Rev. B 77 081411Google Scholar

    [45]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435Google Scholar

    [46]

    Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370Google Scholar

    [47]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541Google Scholar

    [48]

    de Abajo F J G 2014 ACS Photon. 1 135Google Scholar

    [49]

    Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [50]

    Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [51]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [52]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [53]

    Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802Google Scholar

    [54]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630Google Scholar

    [55]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nature Nanotechnol. 7 330Google Scholar

    [56]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [57]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [58]

    Eda G, Maier S A 2013 ACS Nano 7 5660Google Scholar

    [59]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899Google Scholar

    [60]

    Li Y, Li Z, Cheng C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [61]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [62]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [63]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [64]

    Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192Google Scholar

    [65]

    Bolotin K L, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196Google Scholar

    [66]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693Google Scholar

    [67]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [68]

    Ferreira A, Rappoport T G, Cazalilla M A, Castro Neto A H 2014 Phys. Rev. Lett. 112 066601Google Scholar

    [69]

    Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, ven der Marel D, Kuzmenko A B 2011 Nat. Phys. 7 48Google Scholar

    [70]

    Fallahi A, Perruisseau-Carrier J 2012 Appl. Phys. Lett. 101 231605Google Scholar

    [71]

    Sounas D L, Skulason H S, Nguyen H V, Guermoune A, Slaj M, Szkopek T, Caloz C 2013 Appl. Phys. Lett. 102 191901Google Scholar

    [72]

    Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H 2013 Nat. Commun. 4 1841Google Scholar

    [73]

    Fetter A L 1985 Phys. Rev. B 32 7676Google Scholar

    [74]

    Mast D B, Dahm A J, Fetter A L 1985 Phys. Rev. Lett. 54 1706Google Scholar

    [75]

    Wu J, Hawrylak P, Eliasson G, Quinn J J 1986 Phys. Rev. B 33 7091Google Scholar

    [76]

    Armelles G, Cebollada A, Garcia-Martin A, Gonzalez M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [77]

    Poumirol J M, Liu P Q, Slipchenko T M, Nikitin A Y, Martin-Moreno L, Faist J, Kuzmenko A B 2017 Nat. Commun. 8 14626Google Scholar

    [78]

    Bychkov Y A, Martinez G 2008 Phys. Rev. B 77 125417Google Scholar

    [79]

    Berman O L, Gumbs G, Lozovik Y E 2008 Phys. Rev. B 78 085401Google Scholar

    [80]

    Wu J, Chen S, Roslyak O, Gumbs G, Lin M 2011 ACS Nano 5 1026Google Scholar

    [81]

    Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T H, Gaponenko I, Chen J, Kuzmenko A B 2012 Nano Lett. 12 2470Google Scholar

    [82]

    Ferreira A, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 85 205426Google Scholar

    [83]

    Mishchenko E G, Shyton A V, Silvestrov P G 2010 Phys. Rev. Lett. 104 156806Google Scholar

    [84]

    Petkovic I, Williams F I B, Bennaceur K, Portier F, Roche P, Glattli D C 2013 Phys. Rev. Lett. 110 016801Google Scholar

    [85]

    Sokolik A A, Lozovik 2019 Phys. Rev. B 100 125409Google Scholar

    [86]

    Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F 2012 Nano Lett. 12 3766Google Scholar

    [87]

    Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I, Glattli D C 2014 Phys. Rev. Lett. 113 266601Google Scholar

    [88]

    Lin X, Xu Y, Zhang B, Hao R, Chen H, Li E 2013 New J. Phys. 15 113003Google Scholar

    [89]

    Chamanara N, Sounas D, Caloz C 2013 Opt. Express 21 11248Google Scholar

    [90]

    Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L, Fang N 2016 Nat. Commun. 7 13486Google Scholar

    [91]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

    [92]

    Jin D, Christensen T, Soljacic M, Fang N, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [93]

    Wang W, Kinaret J M, Apell S P 2012 Phys. Rev. B 85 235444Google Scholar

    [94]

    Wang W, Apell S P, Kinaret J M 2012 Phys. Rev. B 86 125450Google Scholar

    [95]

    Jiao N, Kang S, Han K, Shen X, Wang W 2019 Phys. Rev. B 99 195447Google Scholar

    [96]

    Jiao N, Kang S, Han K, Shen X, Wang W 2021 Phys. Rev. B 103 085405Google Scholar

    [97]

    Wang N, Ding L, Wang W 2022 Phys. Rev. B 105 235435Google Scholar

    [98]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222Google Scholar

    [99]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 Phys. Rev. B 75 165407Google Scholar

    [100]

    Roldan R, Fuchs J, Goerbig M O 2009 Phys. Rev. B 80 085408Google Scholar

    [101]

    Morimoto T, Hatsugai Y, Aoki H 2009 Phys. Rev. Lett. 103 116803Google Scholar

    [102]

    Yang C, Peeters F M, Xu W 2010 Phys. Rev. B 82 205428Google Scholar

    [103]

    Wang W, Apell S P, Kinaret J M 2011 Phys. Rev. B 84 085423Google Scholar

    [104]

    Wang W, Christensen T, Jauho A P, Thygesen K S, Wubs M, Mortensen N A 2015 Sci. Rep. 5 9535Google Scholar

    [105]

    Wang W, Xiao S, Mortensen N A 2016 Phys. Rev. B 93 165407Google Scholar

    [106]

    Geuzaine C, Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309Google Scholar

  • 图 1  石墨烯圆环(a)、方环(b)、方孔圆环(c)、圆孔方环(d)网格划分示意图, 环的直径或边长均为100 nm, 孔的直径或边长均为50 nm

    Figure 1.  Schematic diagrams of mesh generation for graphene circular ring (a), square ring (b), circular ring with square hole (c), and square ring with circular hole (d). The diameteror side length of ring is 100 nm, and that of hole is 50 nm.

    图 2  石墨烯圆盘的偶极GMP谱线, 数据分别来自2DFEM (a)和3DFEM (b), 其中虚线标记了蓝色曲线半峰的高度

    Figure 2.  Dipolar GMP spectra in graphene disk, obtained from 2DFEM (a) and 3DFEM (b), respectively. The dashed lines mark the position of half maximum of blue curves.

    图 3  石墨烯圆盘(a)和方块(b)的本征值损失谱, 圆盘和方块的直径与边长均为100 nm

    Figure 3.  Eigenvalue loss spectra of graphene disk (a) and graphene square (b). The diameter of disk and the side length of square are both 100 nm.

    图 4  4类石墨烯环的本征值损失谱, 椭圆标记了发生SMS的GMP模式

    Figure 4.  Eigenvalue loss spectra of graphene rings of 4 kinds. The ellipses mark the symmetric mode splitting of those GMPs.

    图 5  4类石墨烯环中偶极GMP模式频率随孔尺寸的演化, 圆圈和菱形分别代表$ {\omega }_{+} $$ {\omega }_{-} $模式

    Figure 5.  Resonance frequencies of dipolar GMP as a function of the size of inner hole. The circles and rhombuses are the results of $ {\omega }_{+} $ and $ {\omega }_{-} $, respectively.

    图 6  4类石墨烯环中偶极GMP的电势分布图, 孔的尺寸为60 nm

    Figure 6.  Potential distribution of the dipolar GMP in graphene rings of four kinds. The diameter or side length of each ring is 60 nm.

    Baidu
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [4]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [5]

    Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U 2011 Nano Lett. 11 2219Google Scholar

    [6]

    Senanayake P, Hung C, Shapiro J, Lin A, Liang B, Williams B S, Huffaker D L 2011 Nano Lett. 11 5279Google Scholar

    [7]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [8]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar

    [9]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [10]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [11]

    Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano Lett. 5 1726Google Scholar

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Phton. 3 388Google Scholar

    [13]

    Christopher P, Xin H, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044Google Scholar

    [14]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [15]

    周利, 王取泉 2019 68 147301Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [16]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [17]

    Khurgin J B 2015 Nat. Nanotech. 10 2Google Scholar

    [18]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [19]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [20]

    Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J 2014 ACS Nano 8 834Google Scholar

    [21]

    Loa I, Syassen K, Monaco G, Vanko G, Krisch M, Hanfland M 2011 Phys. Rev. Lett. 107 086402Google Scholar

    [22]

    Fedyanin D Y, Yakubovsky D I, Kirtaev R V, Volkov V S 2016 Nano Lett. 16 326Google Scholar

    [23]

    Taliercio T, Biagioni P 2019 Nanophotonics 8 949Google Scholar

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [25]

    Frank I W, Tanenbaum D M, Van der Zande A M, McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558Google Scholar

    [26]

    Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z, Koratkar N 2009 ACS Nano 3 3884Google Scholar

    [27]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Comps. Sci. Technol. 72 1459Google Scholar

    [28]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [29]

    Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645Google Scholar

    [30]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [31]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [32]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [33]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297Google Scholar

    [34]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [35]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [36]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [37]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [38]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [39]

    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [40]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Bnerjee S K, Colombo L 2014 Nat. Nanotechonl. 9 768Google Scholar

    [41]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318Google Scholar

    [43]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418Google Scholar

    [44]

    Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T, MacDonald A H 2008 Phys. Rev. B 77 081411Google Scholar

    [45]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435Google Scholar

    [46]

    Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370Google Scholar

    [47]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541Google Scholar

    [48]

    de Abajo F J G 2014 ACS Photon. 1 135Google Scholar

    [49]

    Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [50]

    Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [51]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [52]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491Google Scholar

    [53]

    Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802Google Scholar

    [54]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630Google Scholar

    [55]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nature Nanotechnol. 7 330Google Scholar

    [56]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [57]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [58]

    Eda G, Maier S A 2013 ACS Nano 7 5660Google Scholar

    [59]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photon. 8 899Google Scholar

    [60]

    Li Y, Li Z, Cheng C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [61]

    Zhang Y, Tan Y, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [62]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [63]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [64]

    Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192Google Scholar

    [65]

    Bolotin K L, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196Google Scholar

    [66]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693Google Scholar

    [67]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [68]

    Ferreira A, Rappoport T G, Cazalilla M A, Castro Neto A H 2014 Phys. Rev. Lett. 112 066601Google Scholar

    [69]

    Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, ven der Marel D, Kuzmenko A B 2011 Nat. Phys. 7 48Google Scholar

    [70]

    Fallahi A, Perruisseau-Carrier J 2012 Appl. Phys. Lett. 101 231605Google Scholar

    [71]

    Sounas D L, Skulason H S, Nguyen H V, Guermoune A, Slaj M, Szkopek T, Caloz C 2013 Appl. Phys. Lett. 102 191901Google Scholar

    [72]

    Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H 2013 Nat. Commun. 4 1841Google Scholar

    [73]

    Fetter A L 1985 Phys. Rev. B 32 7676Google Scholar

    [74]

    Mast D B, Dahm A J, Fetter A L 1985 Phys. Rev. Lett. 54 1706Google Scholar

    [75]

    Wu J, Hawrylak P, Eliasson G, Quinn J J 1986 Phys. Rev. B 33 7091Google Scholar

    [76]

    Armelles G, Cebollada A, Garcia-Martin A, Gonzalez M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [77]

    Poumirol J M, Liu P Q, Slipchenko T M, Nikitin A Y, Martin-Moreno L, Faist J, Kuzmenko A B 2017 Nat. Commun. 8 14626Google Scholar

    [78]

    Bychkov Y A, Martinez G 2008 Phys. Rev. B 77 125417Google Scholar

    [79]

    Berman O L, Gumbs G, Lozovik Y E 2008 Phys. Rev. B 78 085401Google Scholar

    [80]

    Wu J, Chen S, Roslyak O, Gumbs G, Lin M 2011 ACS Nano 5 1026Google Scholar

    [81]

    Crassee I, Orlita M, Potemski M, Walter A L, Ostler M, Seyller T H, Gaponenko I, Chen J, Kuzmenko A B 2012 Nano Lett. 12 2470Google Scholar

    [82]

    Ferreira A, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 85 205426Google Scholar

    [83]

    Mishchenko E G, Shyton A V, Silvestrov P G 2010 Phys. Rev. Lett. 104 156806Google Scholar

    [84]

    Petkovic I, Williams F I B, Bennaceur K, Portier F, Roche P, Glattli D C 2013 Phys. Rev. Lett. 110 016801Google Scholar

    [85]

    Sokolik A A, Lozovik 2019 Phys. Rev. B 100 125409Google Scholar

    [86]

    Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F 2012 Nano Lett. 12 3766Google Scholar

    [87]

    Kumada N, Roulleau P, Roche B, Hashisaka M, Hibino H, Petkovic I, Glattli D C 2014 Phys. Rev. Lett. 113 266601Google Scholar

    [88]

    Lin X, Xu Y, Zhang B, Hao R, Chen H, Li E 2013 New J. Phys. 15 113003Google Scholar

    [89]

    Chamanara N, Sounas D, Caloz C 2013 Opt. Express 21 11248Google Scholar

    [90]

    Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljacic M, Fu L, Fang N 2016 Nat. Commun. 7 13486Google Scholar

    [91]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

    [92]

    Jin D, Christensen T, Soljacic M, Fang N, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [93]

    Wang W, Kinaret J M, Apell S P 2012 Phys. Rev. B 85 235444Google Scholar

    [94]

    Wang W, Apell S P, Kinaret J M 2012 Phys. Rev. B 86 125450Google Scholar

    [95]

    Jiao N, Kang S, Han K, Shen X, Wang W 2019 Phys. Rev. B 99 195447Google Scholar

    [96]

    Jiao N, Kang S, Han K, Shen X, Wang W 2021 Phys. Rev. B 103 085405Google Scholar

    [97]

    Wang N, Ding L, Wang W 2022 Phys. Rev. B 105 235435Google Scholar

    [98]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222Google Scholar

    [99]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 Phys. Rev. B 75 165407Google Scholar

    [100]

    Roldan R, Fuchs J, Goerbig M O 2009 Phys. Rev. B 80 085408Google Scholar

    [101]

    Morimoto T, Hatsugai Y, Aoki H 2009 Phys. Rev. Lett. 103 116803Google Scholar

    [102]

    Yang C, Peeters F M, Xu W 2010 Phys. Rev. B 82 205428Google Scholar

    [103]

    Wang W, Apell S P, Kinaret J M 2011 Phys. Rev. B 84 085423Google Scholar

    [104]

    Wang W, Christensen T, Jauho A P, Thygesen K S, Wubs M, Mortensen N A 2015 Sci. Rep. 5 9535Google Scholar

    [105]

    Wang W, Xiao S, Mortensen N A 2016 Phys. Rev. B 93 165407Google Scholar

    [106]

    Geuzaine C, Remacle J F 2009 Int. J. Numer. Meth. Eng. 79 1309Google Scholar

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Zhou Kun, Ma Hao-Yue, Sun Xi-Xian, Wu Xiao-Hu. Active tuning hBN phonon polaritons and spontaneous emission rates based on VO2 and graphene. Acta Physica Sinica, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [8] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] Lu Ya-Xin, Ma Ning. The coupled electromagnetic field effects on quantum magnetic oscillations of graphene. Acta Physica Sinica, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [13] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [14] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [15] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [17] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [19] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [20] Feng Yong-Ping, Cui Jun-Zhi, Deng Ming-Xiang. The two-scale finite element computation for thermoelastic problem in periodic perforated domain. Acta Physica Sinica, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
Metrics
  • Abstract views:  4145
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2022
  • Accepted Date:  06 February 2023
  • Available Online:  17 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回
Baidu
map