Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The coupled electromagnetic field effects on quantum magnetic oscillations of graphene

Lu Ya-Xin Ma Ning

Citation:

The coupled electromagnetic field effects on quantum magnetic oscillations of graphene

Lu Ya-Xin, Ma Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We have investigated the quantum magnetic oscillations of graphene subjected to the spin-orbit interaction(SOI) in the presence of crossed uniform electric and magnetic fields and scattered from impurities at finite temperatures. Landau levels are shown to be modified in an unexpected fashion by the spin-orbit interaction, the electrostatic potential and magnetic confinement; this is strikingly different from the non-relativistic 2D electron gas. Furthermore, we derive the analytical expressions of the thermodynamic quantities subject to the SOI, such as density of states, thermodynamic potential, magnetization, and magnetic susceptibility etc. At finite temperatures, the magnetization and magnetic susceptibility can both be predicted to oscillate periodically as a function of reciprocal field 1/B and shown to be modulated through the SOI and the dimensionless parameter ( = E/ F B). As approaches unity, the values of magnetization and magnetic susceptibility finally move to infinity, indicating a transformation of closed orbits into open trajectories, thereby, leading to the vanishing of magnetic oscillations. And, the magnetic susceptibility depends largely on the external fields, suggesting that graphene should be a non-linear magnetic medium. Besides, the associative effect of impurity scattering and temperature may make the standard 2D electron gas be deemed as the consequence of the relativistic type spectrum of low energy electrons and holes in graphene. Also, we comment on a possibility of using magnetic oscillations for detecting a gap that may open in the spectrum of quasiparticle excitations due to the SOI.
      Corresponding author: Ma Ning, maning@tyut.edu.cn
    • Funds: Project supported by the National Natural Science foundation of China (Grant Nos. 11074196, 11304241), the Qualified Personal Foundation of Taiyuan University of Technology (QPFT), China (Grant No. tyutrc-201273a), and the School Foundation of Taiyuan University of Technology, China (Grant No. 1205-04020102)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Sharapov S G, Gusynin V P, Beck H 2003 Phys. Rev. B 67 144509

    [5]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801

    [6]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. B 71 125124

    [7]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [8]

    Lukose V, Shankar R, Baskaran G 2007 Phys. Rev. Lett. 98 116802

    [9]

    Gu N, Rudner M, Young A, Kim P, Levitov L 2011 Phys. Rev. Lett. 106 066601

    [10]

    Zhang S L, Ma N, Zhang E H 2010 J. Phys. Condens. Matter 22 115302

    [11]

    Ma N, Zhang S L, Liu D Q, Zhang E H 2011 Phys. Lett. A 375 3624

    [12]

    Reis M S, Soriano S 2013 Appl. Phys. Lett. 102 112903

    [13]

    Reis M S 2013 Solid State Commun. 161 19

    [14]

    Alisultanov Z Z 2014 JETP Letters 99 232

    [15]

    Alisultanov Z Z 2014 Physica B 438 41

    [16]

    Alisultanov Z 2014 Phys. Letters A 378 2329

    [17]

    Ji Q S, Hao H Y, Zhang C X, Wang R 2015 Acta Phys. Sin. 64 087302 (in Chinese) [季青山, 郝鸿雁, 张存熙, 王瑞 2015 64 087302]

    [18]

    Dresselhaus G, Dressehaus M S 1965 Phys. Rev. 140 A401

    [19]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [20]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310

    [21]

    Huertas-Hernando D, Guinea F, Brataas A 2006 Phys. Rev. B 74 155426

    [22]

    Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J 2009 Phys. Rev. B 80 235431

    [23]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [24]

    Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [25]

    Castro Neto A H, Guinea F 2009 Phys. Rev. Lett. 103 026804

    [26]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [27]

    Yang Y E, Xiao Y, Yan X H, Dai C J 2015 Chin. Phys. B 24 117204

    [28]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [29]

    Fang Y M, Hang Z Q, Hsu C H, Li X D, Xu Y X, Zhou Y H, Wu Z S, Chuang F C, Zhu Z Z 2015 Scientific Reports 5 14196

    [30]

    Landau L D, Diamagnetismus D M 1930 Z. Phys. 64 629

    [31]

    Landau L D, Lifshitz E M 1971 Relativistic Quantum Theory (New York: Pergamon Press) p100

    [32]

    Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [33]

    Dresselhaus G, Dressehaus M S 1965 Phys. Rev. 140 A401

    [34]

    Meng L, Wang Y L, Zhang L Z, Du S X, Gao H J 2015 Chin. Phys. B 24 086803

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Sharapov S G, Gusynin V P, Beck H 2003 Phys. Rev. B 67 144509

    [5]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801

    [6]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. B 71 125124

    [7]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [8]

    Lukose V, Shankar R, Baskaran G 2007 Phys. Rev. Lett. 98 116802

    [9]

    Gu N, Rudner M, Young A, Kim P, Levitov L 2011 Phys. Rev. Lett. 106 066601

    [10]

    Zhang S L, Ma N, Zhang E H 2010 J. Phys. Condens. Matter 22 115302

    [11]

    Ma N, Zhang S L, Liu D Q, Zhang E H 2011 Phys. Lett. A 375 3624

    [12]

    Reis M S, Soriano S 2013 Appl. Phys. Lett. 102 112903

    [13]

    Reis M S 2013 Solid State Commun. 161 19

    [14]

    Alisultanov Z Z 2014 JETP Letters 99 232

    [15]

    Alisultanov Z Z 2014 Physica B 438 41

    [16]

    Alisultanov Z 2014 Phys. Letters A 378 2329

    [17]

    Ji Q S, Hao H Y, Zhang C X, Wang R 2015 Acta Phys. Sin. 64 087302 (in Chinese) [季青山, 郝鸿雁, 张存熙, 王瑞 2015 64 087302]

    [18]

    Dresselhaus G, Dressehaus M S 1965 Phys. Rev. 140 A401

    [19]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [20]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310

    [21]

    Huertas-Hernando D, Guinea F, Brataas A 2006 Phys. Rev. B 74 155426

    [22]

    Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C, Fabian J 2009 Phys. Rev. B 80 235431

    [23]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [24]

    Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [25]

    Castro Neto A H, Guinea F 2009 Phys. Rev. Lett. 103 026804

    [26]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [27]

    Yang Y E, Xiao Y, Yan X H, Dai C J 2015 Chin. Phys. B 24 117204

    [28]

    Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [29]

    Fang Y M, Hang Z Q, Hsu C H, Li X D, Xu Y X, Zhou Y H, Wu Z S, Chuang F C, Zhu Z Z 2015 Scientific Reports 5 14196

    [30]

    Landau L D, Diamagnetismus D M 1930 Z. Phys. 64 629

    [31]

    Landau L D, Lifshitz E M 1971 Relativistic Quantum Theory (New York: Pergamon Press) p100

    [32]

    Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [33]

    Dresselhaus G, Dressehaus M S 1965 Phys. Rev. 140 A401

    [34]

    Meng L, Wang Y L, Zhang L Z, Du S X, Gao H J 2015 Chin. Phys. B 24 086803

  • [1] Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin. Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl. Acta Physica Sinica, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] Bai Zhan-Bin, Wang Rui, Zhou Ya-Zhou, Wu Tian-Ru, Ge Jian-Lei, Li Jing, Qin Yu-Yuan, Fei Fu-Cong, Cao Lu, Wang Xue-Feng, Wang Xin-Ran, Zhang Shuai, Sun Li-Ling, Song You, Song Feng-Qi. Selective enhancement of Kane Mele-type spin-orbit interaction in graphene. Acta Physica Sinica, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [3] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211815
    [5] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [6] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [7] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [8] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [9] Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo. Switching characteristics of all-spin logic devices based on graphene interconnects. Acta Physica Sinica, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [10] Song Dong-Ling, Ming Liang, Shan Hao, Liao Tian-He. Landau-level stability of electrons in superstrong magnetic fields and its influences on electron Fermi energy. Acta Physica Sinica, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [11] Zhao Zheng-Yin, Wang Hong-Ling, Li Ming. Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well. Acta Physica Sinica, 2016, 65(9): 097101. doi: 10.7498/aps.65.097101
    [12] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [13] Yang Guang-Min, Xu Qiang, Li Bing, Zhang Han-Zhuang, He Xiao-Guang. Quantum capacitance performance of different nitrogen doping configurations of graphene. Acta Physica Sinica, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [14] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [15] Ji Qing-Shan, Hao Hong-Yan, Zhang Cun-Xi, Wang Rui. Electric field controlled energy gap and Landau levels in silicene. Acta Physica Sinica, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [16] Tang Nai-Yun. Bonding-antibonding ground state transition in coupled quantum dots. Acta Physica Sinica, 2013, 62(5): 057301. doi: 10.7498/aps.62.057301
    [17] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [18] Zhang Cun-Xi, Wang Rui, Kong Ling-Min. Photon-mediated electron transport through a quantum well in an intense terahertz field with spin-orbit coupling. Acta Physica Sinica, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [19] Xiao Xian-Bo, Li Xiao-Mao, Chen Yu-Guang. Spin-polarized transport in quantum waveguide systems with attached stubs. Acta Physica Sinica, 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [20] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
Metrics
  • Abstract views:  6654
  • PDF Downloads:  228
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2015
  • Accepted Date:  27 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回
Baidu
map