Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Activation function and computing performance of spin neuron driven by magnetic field and strain

Yuan Jia-Hui Yang Xiao-Kuo Zhang Bin Chen Ya-Bo Zhong Jun Wei Bo Song Ming-Xu Cui Huan-Qing

Citation:

Activation function and computing performance of spin neuron driven by magnetic field and strain

Yuan Jia-Hui, Yang Xiao-Kuo, Zhang Bin, Chen Ya-Bo, Zhong Jun, Wei Bo, Song Ming-Xu, Cui Huan-Qing
PDF
HTML
Get Citation
  • The spin neuron is an emerging artificial neural device which has many advantages such as ultra-low power consumption, strong nonlinearity, and high integration. Besides, it has ability to remember and calculate at the same time. So it is seen as a suitable and excellent candidate for the new generation of neural network. In this paper, a spin neuron driven by magnetic field and strain is proposed. The micromagnetic model of the device is realized by using the OOMMF micromagnetic simulation software, and the numerical model of the device is also established by using the LLG equation. More importantly, a three-layer neural network is composed of spin neurons constructed respectively using three materials (Terfenol-D, FeGa, Ni). It is used to study the activation functions and the ability to recognize the MNIST handwritten datasets.c Results show that the spin neuron can successfully achieve the random magnetization switching to simulate the activation behavior of the biological neuron. Moreover, the results show that if the ranges of the inputting magnetic fields are different, the three materials' neurons can all reach the saturation accuracy. It is expected to replace the traditional CMOS neuron. And the overall power consumption of intelligent computing can be further reduced by using appropriate materials. If we input the magnetic fields in the same range, the recognition speed of the spin neuron made of Ni is the slowest in the three materials. The results can establish a theoretical foundation for the design and the applications of the new artificial neural networks and the intelligent circuits.
      Corresponding author: Yang Xiao-Kuo, yangxk0123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975311) and the Natural Science Basic Research Program of Shaanxi, China (Grant Nos. 2021JM-221, 2020JQ-470).
    [1]

    Aleksander I 2004 Nature 432 18

    [2]

    Linares-Barranco B, Sanchez-Sinencio E, Rodriguez-Vazquez A, Huertas J L 1991 IEEE J. Solid-State Circuits 26 956Google Scholar

    [3]

    Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar

    [4]

    陈怡然, 李海, 陈逸中, 陈凡, 李思成, 刘晨晨, 闻武杰, 吴春鹏, 燕博南 2018 人工智能 2 46Google Scholar

    Chen Y R, Li H, Chen Y Z, Chen F, Li S C, Liu C C, Wen W J, Wu C P, Yan B N 2018 AI-View 2 46Google Scholar

    [5]

    Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K, Aono M 2013 Nanotechnology 24 384003Google Scholar

    [6]

    Chen C, Yang M, Liu S, Liu T, Zhu K, Zhao Y, Wang H, Huang Q, Huang R 2019 Symposium on VLSI Technology (Kyoto: IEEE) p136

    [7]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [8]

    Tuma T, Pantazi A, Gallo M L, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [9]

    Cai J L, Fang B, Zhang L, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015Google Scholar

    [10]

    Zhu J D, Zhang T, Yang Y C, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [11]

    Yue K, Liu Y Z, Lake R K, Parker A C 2019 Sci. Adv. 5 eaau8170Google Scholar

    [12]

    Fukami S, Ohno H 2018 J. Appl. Phys. 124 151904Google Scholar

    [13]

    Sengupta A, Choday S H, Y Kim, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [14]

    Fulara H, Zahedinejad M, Khymyn R, Dvornik M, Fukami S, Kanai S, Ohno H, Akerman J 2020 Nat. Commun. 11 4006Google Scholar

    [15]

    Dong I, Yoon G, Sik H, Park, Wanjun 2015 J. Appl. Phys. 117 17D714Google Scholar

    [16]

    Vincent A F, Jerome L, Locatelli N, Nesrine B R, Bichler O, Gamrat C, Zhao W S, Klein J O, Galdin-Retailleau S, Querlioz D 2015 IEEE T. Biomed. Circ. S 9 166Google Scholar

    [17]

    Chen Y B, Song M X, Wei B, Yang X K, Cui H Q, Liu J H, Li C 2020 IEEE Magn. Lett. 11 4504505Google Scholar

    [18]

    Kim Y, Fong X, Roy K 2015 IEEE Magn. Lett. 6 3001004Google Scholar

    [19]

    Fukushima A, Seki T, Yakushiji K, Kubota H, Imamura H, Yuasa S, Ando K 2014 Appl. Phys. Express 7 083001Google Scholar

    [20]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [21]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391Google Scholar

    [22]

    Carlton D B, Emley N C, Tuchfeldand E, Bokor J 2008 Nano Lett. 8 4173Google Scholar

    [23]

    Kurenkov A, DuttaGupta S, Zhang C H, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 1900636Google Scholar

    [24]

    Cai J L, Fang B, Wang C, Zeng Z M 2017 Appl. Phys. Lett. 111 182410Google Scholar

    [25]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv. Electron. Mater. 5 1800782Google Scholar

    [26]

    Zhang S, Su Y, Li X, Li R, Tian W, Hong J, You L 2019 Appl. Phys. Lett. 114 042401Google Scholar

    [27]

    Sheng Y, Edmonds K W, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [28]

    Cao Y, Rushforth A W, Sheng Y, Zheng H Z, Wang K Y 2019 Adv. Funct. Mater. 29 1808104Google Scholar

    [29]

    王宗巍, 杨玉超, 蔡一茂, 朱涛, 丛杨, 王志衡, 黄如 2019 中国科学基金 33 656Google Scholar

    Wang Z W, Yang Y C, Cai Y M, Zhu T, Cong Y, Wang Z H, Huang R 2019 Bulletin of National Natural Science Foundation of China 33 656Google Scholar

    [30]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [31]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062Google Scholar

    [32]

    杨娜娜, 陈轩, 汪尧进 2018 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [33]

    Cowburn R P, Welland M E 2000 Science 287 1466Google Scholar

    [34]

    Locatelli N, Cros V, Grollier J 2013 Nat. Mater. 13 11Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Li X, Carka D, Liang C Y, Sepulveda A E, Keller S M, Amiri P K, Carman G P, Lynch C S 2015 J. Appl.Phys. 118 014101Google Scholar

    [37]

    王庆伟, 张晶晶, 马天宇, 严密 2009 稀有金属材料与工程 38 1234Google Scholar

    Wang Q W, Zhang J J, Ma T Y, Yan M 2009 Rare. Metal. Mat. Eng. 38 1234Google Scholar

    [38]

    Bertotti G, Serpico C, Mayergoyz I D 2009 Nonlinear Magnetization Dynamics in Nanosystems (Oxford: Elsevier) pp401−445

    [39]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D. Appl. Phys. 38 3333Google Scholar

    [40]

    Liyanagedera C M, Sengupta A, Jaiswal A, Roy K 2017 Phys. Rev. Appl. 8 064017Google Scholar

    [41]

    Glorot X, Bengio Y 2010 J. Mach. Learn. Res. 9 249

    [42]

    Fashami M S, Atulasimha J, Bandyopadhyay S 2012 Nanotechnology 23 105201Google Scholar

    [43]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [44]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2018 IEEE Electron Device Lett. 40 220Google Scholar

    [45]

    Das J, Alam S M, Bhanja S 2011 IEEE J. Emerg. Sel. Top. Circuits Syst. 1 267Google Scholar

  • 图 1  磁场辅助磁弹时钟神经元

    Figure 1.  Magnetic field assisted strain-mediated neuron.

    图 2  磁化翻转原理图

    Figure 2.  Schematic of magnetization switching.

    图 3  动态磁化过程 (a) 磁化初始方向为–y; (b) 施加30 MPa应力, 磁化翻转90°; 撤去应力, 施加10 mT磁场; (c)方向相反, 磁化翻转180°; (d)方向相同, 磁化翻转0°

    Figure 3.  Magnetization process: (a) Initial direction of magnetization is –y; (b) a 30 MPa strain is applied and then 90° switching is achieved, removing strain and applying a 10 mT magnetic field; (c) 180° magnetization switching; (d) 0° magnetization switching.

    图 4  磁化矢量随时间变化曲线图 (a) 1 ns时, 施加磁场沿y轴正方向时的磁化矢量变化图; (b) 1 ns时, 施加磁场沿y轴负方向的磁化矢量变化图

    Figure 4.  Magnetization vector with time: (a) When t = 1 ns, a magnetic field is applied in the direction along +y; (b) when t = 1 ns, a magnetic field is applied in the direction along –y.

    图 5  室温下随机磁化翻转的动态磁化过程 (a) 180°磁化翻转; (b) 0°磁化翻转

    Figure 5.  Magnetization dynamics at room temperature: (a) 180° magnetization switching; (b) 0° magnetization switching.

    图 6  180°磁化翻转概率与输入磁场的关系, 磁致伸缩层材料为(a) Terfenol-D, (b) FeGa, (c) Ni

    Figure 6.  180° magnetization switching probability versus magnetic field, the magnetostrictive layer material is (a) Terfenol-D, (b) FeGa, (c) Ni.

    图 7  基于磁场辅助磁弹时钟的自旋神经元的三层神经网络结构示意图

    Figure 7.  Three-layer neural network based on magnetic field + strain spin neurons.

    图 8  不同材料神经元器件的识别精度

    Figure 8.  Recognition rate obtained from the neural network with different materials.

    图 9  输入磁场为0—15 mT时, 不同材料神经元器件的识别精度

    Figure 9.  When the magnetic field is 0–15 mT, the recognition rate obtained from the neural network with different materials.

    表 1  材料参数表

    Table 1.  Parameters of different materials.

    参数Terfenol-DFeGaNi
    杨氏模量Y/(1010 Pa)8.02.521.4
    磁致伸缩系数λs/10–46.04.0–0.2
    吉尔伯特阻尼系数α0.1000.1000.045
    回磁比γ/(105 rad·s–1·T–1)2.212.212.21
    饱和磁化率Ms/(105 A·m–1)8.0013.204.84
    交换作用常数A/(10–11 J·m–1)0.901.601.05
    DownLoad: CSV
    Baidu
  • [1]

    Aleksander I 2004 Nature 432 18

    [2]

    Linares-Barranco B, Sanchez-Sinencio E, Rodriguez-Vazquez A, Huertas J L 1991 IEEE J. Solid-State Circuits 26 956Google Scholar

    [3]

    Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar

    [4]

    陈怡然, 李海, 陈逸中, 陈凡, 李思成, 刘晨晨, 闻武杰, 吴春鹏, 燕博南 2018 人工智能 2 46Google Scholar

    Chen Y R, Li H, Chen Y Z, Chen F, Li S C, Liu C C, Wen W J, Wu C P, Yan B N 2018 AI-View 2 46Google Scholar

    [5]

    Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K, Aono M 2013 Nanotechnology 24 384003Google Scholar

    [6]

    Chen C, Yang M, Liu S, Liu T, Zhu K, Zhao Y, Wang H, Huang Q, Huang R 2019 Symposium on VLSI Technology (Kyoto: IEEE) p136

    [7]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [8]

    Tuma T, Pantazi A, Gallo M L, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [9]

    Cai J L, Fang B, Zhang L, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015Google Scholar

    [10]

    Zhu J D, Zhang T, Yang Y C, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [11]

    Yue K, Liu Y Z, Lake R K, Parker A C 2019 Sci. Adv. 5 eaau8170Google Scholar

    [12]

    Fukami S, Ohno H 2018 J. Appl. Phys. 124 151904Google Scholar

    [13]

    Sengupta A, Choday S H, Y Kim, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [14]

    Fulara H, Zahedinejad M, Khymyn R, Dvornik M, Fukami S, Kanai S, Ohno H, Akerman J 2020 Nat. Commun. 11 4006Google Scholar

    [15]

    Dong I, Yoon G, Sik H, Park, Wanjun 2015 J. Appl. Phys. 117 17D714Google Scholar

    [16]

    Vincent A F, Jerome L, Locatelli N, Nesrine B R, Bichler O, Gamrat C, Zhao W S, Klein J O, Galdin-Retailleau S, Querlioz D 2015 IEEE T. Biomed. Circ. S 9 166Google Scholar

    [17]

    Chen Y B, Song M X, Wei B, Yang X K, Cui H Q, Liu J H, Li C 2020 IEEE Magn. Lett. 11 4504505Google Scholar

    [18]

    Kim Y, Fong X, Roy K 2015 IEEE Magn. Lett. 6 3001004Google Scholar

    [19]

    Fukushima A, Seki T, Yakushiji K, Kubota H, Imamura H, Yuasa S, Ando K 2014 Appl. Phys. Express 7 083001Google Scholar

    [20]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [21]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391Google Scholar

    [22]

    Carlton D B, Emley N C, Tuchfeldand E, Bokor J 2008 Nano Lett. 8 4173Google Scholar

    [23]

    Kurenkov A, DuttaGupta S, Zhang C H, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 1900636Google Scholar

    [24]

    Cai J L, Fang B, Wang C, Zeng Z M 2017 Appl. Phys. Lett. 111 182410Google Scholar

    [25]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv. Electron. Mater. 5 1800782Google Scholar

    [26]

    Zhang S, Su Y, Li X, Li R, Tian W, Hong J, You L 2019 Appl. Phys. Lett. 114 042401Google Scholar

    [27]

    Sheng Y, Edmonds K W, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [28]

    Cao Y, Rushforth A W, Sheng Y, Zheng H Z, Wang K Y 2019 Adv. Funct. Mater. 29 1808104Google Scholar

    [29]

    王宗巍, 杨玉超, 蔡一茂, 朱涛, 丛杨, 王志衡, 黄如 2019 中国科学基金 33 656Google Scholar

    Wang Z W, Yang Y C, Cai Y M, Zhu T, Cong Y, Wang Z H, Huang R 2019 Bulletin of National Natural Science Foundation of China 33 656Google Scholar

    [30]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [31]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062Google Scholar

    [32]

    杨娜娜, 陈轩, 汪尧进 2018 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [33]

    Cowburn R P, Welland M E 2000 Science 287 1466Google Scholar

    [34]

    Locatelli N, Cros V, Grollier J 2013 Nat. Mater. 13 11Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Li X, Carka D, Liang C Y, Sepulveda A E, Keller S M, Amiri P K, Carman G P, Lynch C S 2015 J. Appl.Phys. 118 014101Google Scholar

    [37]

    王庆伟, 张晶晶, 马天宇, 严密 2009 稀有金属材料与工程 38 1234Google Scholar

    Wang Q W, Zhang J J, Ma T Y, Yan M 2009 Rare. Metal. Mat. Eng. 38 1234Google Scholar

    [38]

    Bertotti G, Serpico C, Mayergoyz I D 2009 Nonlinear Magnetization Dynamics in Nanosystems (Oxford: Elsevier) pp401−445

    [39]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D. Appl. Phys. 38 3333Google Scholar

    [40]

    Liyanagedera C M, Sengupta A, Jaiswal A, Roy K 2017 Phys. Rev. Appl. 8 064017Google Scholar

    [41]

    Glorot X, Bengio Y 2010 J. Mach. Learn. Res. 9 249

    [42]

    Fashami M S, Atulasimha J, Bandyopadhyay S 2012 Nanotechnology 23 105201Google Scholar

    [43]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [44]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2018 IEEE Electron Device Lett. 40 220Google Scholar

    [45]

    Das J, Alam S M, Bhanja S 2011 IEEE J. Emerg. Sel. Top. Circuits Syst. 1 267Google Scholar

  • [1] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [2] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] Huang Ying, Gu Chang-Gui, Yang Hui-Jie. Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [6] Gu Ya-Na, Liang Yan, Wang Guang-Yi, Xia Chen-Yang. Design of NbOx memristive neuron and its application in spiking neural networks. Acta Physica Sinica, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [7] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [8] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [9] Liu Jia-Hao,  Yang Xiao-Kuo,  Wei Bo,  Li Cheng,  Zhang Ming-Liang,  Li Chuang,  Dong Dan-Na. Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet. Acta Physica Sinica, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [10] Chen Ai-Tian, Zhao Yong-Gang. Progress of converse magnetoelectric coupling effect in multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [11] Sun Xiao-Juan, Yang Bai-Hua, Wu Ye, Xiao Jing-Hua. Effects of arrangement of heterogeneous neurons on frequency synchronization of a ring-coupled neuronal network. Acta Physica Sinica, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [12] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [13] Hao Jian-Hong, Gao Hui. Micromagnetic simulation of magnetization reversal on the annular free layer with nick in magnetic random access memory. Acta Physica Sinica, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [14] Wu Wang-Sheng, Tang Guo-Ning. Synchronizations of chaotic neuronal networks under different couplings. Acta Physica Sinica, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [15] Yang Xiao-Kuo, Cai Li, Wang Jiu-Hong, Huang Hong-Tu, Zhao Xiao-Hui, Li Zheng-Cao, Liu Bao-Jun. Experimental study of magnetic quantum-dot cellular automata function arrays. Acta Physica Sinica, 2012, 61(4): 047502. doi: 10.7498/aps.61.047502
    [16] Gao Rui-Xin, Xu Zhen, Chen Da-Xin, Xu Chu-Dong, Chen Zhi-Feng, Liu Xiao-Dong, Zhou Shi-Ming, Lai Tian-Shu. RE-TM antiferromagnetic coupling and laser induced ultrafast magnetization reversal dynamics in GdFeCo magneto-optical films. Acta Physica Sinica, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] HE GUO-GUANG, CAO ZHI-TONG. CONTROLLING CHAOS IN CHAOTIC NEURAL NETWORK. Acta Physica Sinica, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
    [19] CHANG SHENG-JIANG, LIU YUE, ZHANG WEN-WEI, SHEN JIN-YUAN, ZHAI HONG-CHEN, ZHANG YAN-XIN. A NEURAL NETWORK MODEL FOR UNEQUALLY DISTRIBUTED NEURON STATES AND ITS OPTICAL IMPLEMENTATION. Acta Physica Sinica, 1998, 47(7): 1101-1109. doi: 10.7498/aps.47.1101
    [20] MA YU-QIANG, ZHANG YUE-MING, GONG CHANG-DE. RETRIEVAL PROPERTIES OF HOPFIELD NEURAL NETWORK MODELS. Acta Physica Sinica, 1993, 42(8): 1356-1360. doi: 10.7498/aps.42.1356
Metrics
  • Abstract views:  4430
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2021
  • Accepted Date:  16 June 2021
  • Available Online:  08 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回
Baidu
map