Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

General higher-order rogue waves in the space-shifted $\mathcal{PT}$-symmetric nonlocal nonlinear Schrödinger equation

Rao Ji-Guang Chen Sheng-An Wu Zhao-Jun He Jin-Song

Citation:

General higher-order rogue waves in the space-shifted $\mathcal{PT}$-symmetric nonlocal nonlinear Schrödinger equation

Rao Ji-Guang, Chen Sheng-An, Wu Zhao-Jun, He Jin-Song
PDF
HTML
Get Citation
  • General higher-order rogue wave solutions to the space-shifted $\mathcal{PT}$-symmetric nonlocal nonlinear Schrödinger equation are constructed by employing the Kadomtsev-Petviashvili hierarchy reduction method. The analytical expressions for rogue wave solutions of any Nth-order are given through Schur polynomials. We first analyze the dynamics of the first-order rogue waves, and find that the maximum amplitude of the rogue waves can reach any height larger than three times of the constant background amplitude. The effects of the space-shifted factor $x_0$ of the $\mathcal{PT}$-symmetric nonlocal nonlinear Schrödinger equation in the first-order rogue wave solutions are studied, which only changes the center positions of the rogue waves. The dynamical behaviours and patterns of the second-order rogue waves are also analytically investigated. Then the relationships between Nth-order rogue wave patterns and the parameters in the analytical expressions of the rogue wave solutions are given, and the several different patterns of the higher-order rogue waves are further shown.
      Corresponding author: He Jin-Song, hejingsong@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12071304, 12201195), the Natural Science Foundation of Hubei Province, China (Grant No. 2022CFB818), the Doctoral Initiation Fund of Hubei University of Science and Technology, China (Grant No. BK202302), and the Innovation Research Eerm of Hubei University of Science and Technology, China (Grant No. 2022T05)
    [1]

    Ablowitz M J, Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia: SIAM)

    [2]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)

    [3]

    Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [5]

    Mostafazadeh A 2003 J. Phys. A: Math. Gen. 36 7081Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [8]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [9]

    Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [10]

    Regensburger A, Miri M A, Bersch C, Nager J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902Google Scholar

    [11]

    Yan Z Y, Wen Z C, Konotop V V 2015 Phys. Rev. A 92 023821Google Scholar

    [12]

    Yan Z Y, Wen Z C, Hang C 2015 Phys. Rev. E 92 022913Google Scholar

    [13]

    Yan Z Y 2013 Proc. R. Soc. London, Ser. A 371 20120059Google Scholar

    [14]

    Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105Google Scholar

    [15]

    Lin M, Xu T 2015 Phys. Rev. E 91 033202Google Scholar

    [16]

    Xu T, Lan S, Li M, Zhang G W 2019 Physica D 390 47Google Scholar

    [17]

    Huang X, Ling L M 2016 Eur. Phys. J. Plus 131 148Google Scholar

    [18]

    Wen X Y, Yan Z Y, Yang Y Q 2016 Chaos 26 063123Google Scholar

    [19]

    Rao J G, He J S, Mihalache D, Cheng Y 2021 Z. Angew. Math. Phys. 72 1Google Scholar

    [20]

    Yang B, Yang J K 2019 Lett. Math. Phys. 109 945Google Scholar

    [21]

    Yang B, Yang J K 2020 J. Math. Anal. Appl. 487 124023Google Scholar

    [22]

    Yang B, Chen Y 2018 Chaos 28 053104Google Scholar

    [23]

    Rao J G, Cheng Y, Porsezian K, Mihalache D, He J S 2020 Physica D 401 132180Google Scholar

    [24]

    Rao J G, Zhang Y S, Fokas A S, He J S 2018 Nonlinearity 31 4090Google Scholar

    [25]

    Ablowitz M J, Musslimani Z H 2017 Stud. Appl. Math. 139 7Google Scholar

    [26]

    Lou S Y, Huang L 2017 Sci. Rep. 7 1Google Scholar

    [27]

    Lou S Y 2018 J. Math. Phys. 59 083507Google Scholar

    [28]

    Zhao Q, Jia M, Lou S Y 2019 Commun. Theor. Phys. 71 1149Google Scholar

    [29]

    Ablowitz M J, Musslimani Z H 2021 Phys. Lett. A 409 127516Google Scholar

    [30]

    Gürses M, Pekcan A 2022 Phys. Lett. A 422 127793Google Scholar

    [31]

    Liu S M, Wang J, Zhang D J 2022 Rep. Math. Phys. 89 199Google Scholar

    [32]

    Wang X, Wei J 2022 Appl. Math. Lett. 130 107998Google Scholar

    [33]

    Wang M M, Chen Y 2022 Nonlinear Dyn. 110 753Google Scholar

    [34]

    Yang J, Song H F, Fang M S, Ma L Y 2022 Nonlinear Dyn. 107 3767Google Scholar

    [35]

    Ren P, Rao J G 2022 Nonlinear Dyn. 108 2461Google Scholar

    [36]

    Wu J 2022 Nonlinear Dyn. 108 4021Google Scholar

    [37]

    Wei B, Liang J 2022 Nonlinear Dyn. 109 2969Google Scholar

    [38]

    Wang X B, Tian S F 2022 Theor. Math. Phys. 212 1193Google Scholar

    [39]

    Guo B L, Ling L L, Liu Q P 2012 Phys. Rev. E 85 026607Google Scholar

    [40]

    Ohta Y, Yang J K 2012 Proc. R. Soc. London, Ser. A 468 1716Google Scholar

    [41]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [42]

    Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [43]

    Ling L M, Guo B L, Zhao L C 2014 Phys. Rev. E 89 041201Google Scholar

    [44]

    Zhao L C, Guo B L, Ling L L 2016 J. Math. Phys. 57 043508Google Scholar

    [45]

    Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101Google Scholar

    [46]

    Chen S H, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202Google Scholar

    [47]

    Zhang G Q, Yan Z Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 62 117Google Scholar

    [48]

    Bilman D, Miller P D 2019 Commun. Pure Appl. Math. 72 1722Google Scholar

    [49]

    Bilman D, Ling L M, Miller P D 2020 Duke Math. J. 169 671Google Scholar

    [50]

    Rao J G, Mihalache D, He J S 2022 Appl. Math. Lett. 134 108362Google Scholar

    [51]

    Rao J G, He J S, Malomed B A 2022 J. Math. Phys. 63 1Google Scholar

    [52]

    Rao J G, He J S, Cheng Y 2022 Lett. Math. Phys. 112 75Google Scholar

    [53]

    郭柏灵, 田立新, 闫振亚, 凌黎明 2015 怪波及其数学理论 (浙江: 浙江科学技术出版社)

    Guo B L, Tian L X, Tian Z Y, Ling L M 2015 Rogue Wave and Its Mathematical Theory (Zhejiang: Zhejiang Science and Technology Press)

    [54]

    Peregrine D H 1983 J. Aust. Math. Soc. B 25 16Google Scholar

    [55]

    Hopkin M 2004 Nature 430 492Google Scholar

    [56]

    Muller P, Garret C, Osborne A 2005 Oceanography 18 66Google Scholar

    [57]

    Perkins S 2006 Science News 170 328Google Scholar

    [58]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Heidelberg: Springer)

    [59]

    Pelinovsky E, Kharif C 2008 Extreme Ocean Waves (Berlin: Springer)

    [60]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 06402

    [61]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P, McClintock P 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [62]

    Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen P A E M, Kinoshita T, Monbaliu J, Mori N, Osborne A R, Serio M, Stansberg C T, Tamura H, Trulsen K 2009 Phys. Rev. Lett. 102 114502Google Scholar

    [63]

    Yang B, Yang J K 2021 Physica D 419 132850Google Scholar

    [64]

    Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)

    [65]

    Jimbo M, Miwa T 1983 Publ. RIMS Kyoto Univ. 19 943Google Scholar

    [66]

    Date E, Kashiwara M, Jimbo M, Miwa T 1983 Transformation Groups for Soliton Equations, in Nonlinear Integrable Systems–Classical Theory and Quantum Theory (Singapore: World Scientific)

  • 图 1  (a)非局域非线性薛定谔方程(2)的一阶怪波解(13), 参数取值为$c_1^{ + } = {2}/{5},\; c_1^ - = {2}/{5},\; x_0 = 0$; (b)不同参数取值下一阶怪波解沿$ t = 0 $的截面图: $c_1^ + = c_1^ - = 0, \; x_0 = $$ - 10$ (蓝色实线), $c_1^ + = c_1^ - = {1}/{5}, \; x_0 = 0$ (红色短虚线), $c_1^ + = c_1^ - = {2}/{5}, \; x_0 = 10$ (黑色长虚线)

    Figure 1.  (a) The first-order rogue wave solutions (13) of the nonlocal NLS equation (2) with parameters $c_1^{ + } = {2}/{5}, $$ c_1^ - = {2}/{5},\; x_0 = 0$; (b) plot of the first-order rogue wave solutions along $ t = 0 $ with parameters $c_1^ + = c_1^ - = 0, $$ x_0 = - 10$ (Blue solid line), $c_1^ + = c_1^ - = {1}/{5},\; x_0 = 0$ (Red short dotted line), $c_1^ + = c_1^ - = {2}/{5}, \; x_0 = 10$ (Black long dotted line).

    图 2  (a)二阶怪波解的最大值$ |u_2(x_0, 0)| $$ c_1^{ + } = c_1^{ - } $变化; (b)不同参数取值下一阶怪波解沿$ t = 0 $的截面图: $c_1^ + = c_1^ - = $$ 0, \;x_0 = - 10$(蓝色实线), $c_1^ + = c_1^ - = {1}/{5},\; x_0 = 0$(红色短虚线), $c_1^ + = c_1^ - = {1}/{4}, \;x_0 = 10$(黑色长虚线); (c)二阶怪波解$ |u_2 | $的基本模式, 参数$c_1^{ + } = c_1^{ - } = {1}/{10}, \;c_3^{ + } = c_3^{ - } = 0$; (d)二阶怪波解$ |u_2 | $的三角模式, 参数$c_1^{ + } = c_1^{ - } = {1}/{10},\; c_3^{ + } = - c_3^{ - } = 10$

    Figure 2.  (a) Changes in the maximum of the second-order rogue wave $ |u_2(x_0, 0)| $ along $ c_1^{ + } = c_1^{ - } $; (b) pot of the second-order rogue waves along $ t = 0 $ with different parameters: $c_1^ + = c_1^ - = 0, \;x_0 = - 10$ (Blue solid line), $c_1^ + = c_1^ - = {1}/{5},\;x_0 = 0$ (Red short dotted line), $c_1^ + = c_1^ - = {1}/{4},\; x_0 = 10$ (Black long dotted line); (c) fundamental pattern of the second-order rogue wave solution $ |u_2 | $ with parameters $c_1^{ + } = c_1^{ - }= {1}/{10},\; c_3^{ + } = c_3^{ - } = 0$; (d) triangle pattern of the second-order rogue wave solution $ |u_2 | $ with parameters $c_1^{ + } = c_1^{ - } = {1}/{10}, \;c_3^{ + } = - c_3^{ - } = 10$

    图 3  从左往右四列依次为3阶至6阶怪波在不同参数下的模式, 所有图形中参数$c_1^{\pm} = ({1}/{100}){\rm{i}}$. 第一行: 3阶至6阶怪波的基本模式, $ c_{2 j-1}^{\pm} = 0 $; 第二行: 3阶至6阶怪波的三角模式, $ c_{3}^{\pm} = \pm10^{N - 2} $(从左往右图形中N的值依次为$ 3, 4, 5, 6 $), 其他参数均为0; 第三行: 3阶至6阶怪波的圆形模式, $ c_{2 N - 1}^{\pm} = \pm10000 $(从左往右图形中N的值依次为$ 3, 4, 5, 6 $), 其他参数均为0

    Figure 3.  The four columns from left to right correspond to the patterns of third-order to sixth-order rogue waves with $c_1^{\pm} = ({1}/{100}){\rm{i}}$ and different parameters: The first row: The fundamental patterns of third-order to sixth-order rogue waves with parameters $ c_{2 j - 1}^{\pm} = 0 $; The second row: The triangle patterns of third-order to sixth-order rogue waves with parameters $ c_{3}^{\pm} = \pm10^{N - 2} $(The value of N in the figures from left to right is $ 3, 4, 5, 6 $), and the other parameters are zero; The third row: The circular patterns of third-order to sixth-order rogue waves with parameters $ c_{2 N-1}^{\pm} = \pm10000 $(The value of N in the figures from left to right is $ 3, 4, 5, 6 $), and the other parameters are zero

    图 4  左列为5阶怪波的双环形模式, 参数取值为$ c_7^{\pm} = \pm10000 $, 其他参数为0. 右列为6阶怪波的双环形模式, 参数取值为$ c_9^{\pm} = \pm10000 $, 其他参数为0

    Figure 4.  The left column is double ring pattern of the fifth-order rogue wave with parameters $ c_7^{\pm} = \pm10000 $ and the other parameter being zero. The right column is double ring pattern of the sixth-order rogue wave with parameters $ c_9^{\pm} = \pm10000 $ and the other parameters being zero

    Baidu
  • [1]

    Ablowitz M J, Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia: SIAM)

    [2]

    Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)

    [3]

    Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [5]

    Mostafazadeh A 2003 J. Phys. A: Math. Gen. 36 7081Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [8]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [9]

    Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [10]

    Regensburger A, Miri M A, Bersch C, Nager J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902Google Scholar

    [11]

    Yan Z Y, Wen Z C, Konotop V V 2015 Phys. Rev. A 92 023821Google Scholar

    [12]

    Yan Z Y, Wen Z C, Hang C 2015 Phys. Rev. E 92 022913Google Scholar

    [13]

    Yan Z Y 2013 Proc. R. Soc. London, Ser. A 371 20120059Google Scholar

    [14]

    Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105Google Scholar

    [15]

    Lin M, Xu T 2015 Phys. Rev. E 91 033202Google Scholar

    [16]

    Xu T, Lan S, Li M, Zhang G W 2019 Physica D 390 47Google Scholar

    [17]

    Huang X, Ling L M 2016 Eur. Phys. J. Plus 131 148Google Scholar

    [18]

    Wen X Y, Yan Z Y, Yang Y Q 2016 Chaos 26 063123Google Scholar

    [19]

    Rao J G, He J S, Mihalache D, Cheng Y 2021 Z. Angew. Math. Phys. 72 1Google Scholar

    [20]

    Yang B, Yang J K 2019 Lett. Math. Phys. 109 945Google Scholar

    [21]

    Yang B, Yang J K 2020 J. Math. Anal. Appl. 487 124023Google Scholar

    [22]

    Yang B, Chen Y 2018 Chaos 28 053104Google Scholar

    [23]

    Rao J G, Cheng Y, Porsezian K, Mihalache D, He J S 2020 Physica D 401 132180Google Scholar

    [24]

    Rao J G, Zhang Y S, Fokas A S, He J S 2018 Nonlinearity 31 4090Google Scholar

    [25]

    Ablowitz M J, Musslimani Z H 2017 Stud. Appl. Math. 139 7Google Scholar

    [26]

    Lou S Y, Huang L 2017 Sci. Rep. 7 1Google Scholar

    [27]

    Lou S Y 2018 J. Math. Phys. 59 083507Google Scholar

    [28]

    Zhao Q, Jia M, Lou S Y 2019 Commun. Theor. Phys. 71 1149Google Scholar

    [29]

    Ablowitz M J, Musslimani Z H 2021 Phys. Lett. A 409 127516Google Scholar

    [30]

    Gürses M, Pekcan A 2022 Phys. Lett. A 422 127793Google Scholar

    [31]

    Liu S M, Wang J, Zhang D J 2022 Rep. Math. Phys. 89 199Google Scholar

    [32]

    Wang X, Wei J 2022 Appl. Math. Lett. 130 107998Google Scholar

    [33]

    Wang M M, Chen Y 2022 Nonlinear Dyn. 110 753Google Scholar

    [34]

    Yang J, Song H F, Fang M S, Ma L Y 2022 Nonlinear Dyn. 107 3767Google Scholar

    [35]

    Ren P, Rao J G 2022 Nonlinear Dyn. 108 2461Google Scholar

    [36]

    Wu J 2022 Nonlinear Dyn. 108 4021Google Scholar

    [37]

    Wei B, Liang J 2022 Nonlinear Dyn. 109 2969Google Scholar

    [38]

    Wang X B, Tian S F 2022 Theor. Math. Phys. 212 1193Google Scholar

    [39]

    Guo B L, Ling L L, Liu Q P 2012 Phys. Rev. E 85 026607Google Scholar

    [40]

    Ohta Y, Yang J K 2012 Proc. R. Soc. London, Ser. A 468 1716Google Scholar

    [41]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [42]

    Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [43]

    Ling L M, Guo B L, Zhao L C 2014 Phys. Rev. E 89 041201Google Scholar

    [44]

    Zhao L C, Guo B L, Ling L L 2016 J. Math. Phys. 57 043508Google Scholar

    [45]

    Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101Google Scholar

    [46]

    Chen S H, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202Google Scholar

    [47]

    Zhang G Q, Yan Z Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 62 117Google Scholar

    [48]

    Bilman D, Miller P D 2019 Commun. Pure Appl. Math. 72 1722Google Scholar

    [49]

    Bilman D, Ling L M, Miller P D 2020 Duke Math. J. 169 671Google Scholar

    [50]

    Rao J G, Mihalache D, He J S 2022 Appl. Math. Lett. 134 108362Google Scholar

    [51]

    Rao J G, He J S, Malomed B A 2022 J. Math. Phys. 63 1Google Scholar

    [52]

    Rao J G, He J S, Cheng Y 2022 Lett. Math. Phys. 112 75Google Scholar

    [53]

    郭柏灵, 田立新, 闫振亚, 凌黎明 2015 怪波及其数学理论 (浙江: 浙江科学技术出版社)

    Guo B L, Tian L X, Tian Z Y, Ling L M 2015 Rogue Wave and Its Mathematical Theory (Zhejiang: Zhejiang Science and Technology Press)

    [54]

    Peregrine D H 1983 J. Aust. Math. Soc. B 25 16Google Scholar

    [55]

    Hopkin M 2004 Nature 430 492Google Scholar

    [56]

    Muller P, Garret C, Osborne A 2005 Oceanography 18 66Google Scholar

    [57]

    Perkins S 2006 Science News 170 328Google Scholar

    [58]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Heidelberg: Springer)

    [59]

    Pelinovsky E, Kharif C 2008 Extreme Ocean Waves (Berlin: Springer)

    [60]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 06402

    [61]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P, McClintock P 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [62]

    Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen P A E M, Kinoshita T, Monbaliu J, Mori N, Osborne A R, Serio M, Stansberg C T, Tamura H, Trulsen K 2009 Phys. Rev. Lett. 102 114502Google Scholar

    [63]

    Yang B, Yang J K 2021 Physica D 419 132850Google Scholar

    [64]

    Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)

    [65]

    Jimbo M, Miwa T 1983 Publ. RIMS Kyoto Univ. 19 943Google Scholar

    [66]

    Date E, Kashiwara M, Jimbo M, Miwa T 1983 Transformation Groups for Soliton Equations, in Nonlinear Integrable Systems–Classical Theory and Quantum Theory (Singapore: World Scientific)

  • [1] Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen. Self-similar transformation and excitation of rogue waves for (2+1)-dimensional Zakharov equation. Acta Physica Sinica, 2022, 71(8): 084204. doi: 10.7498/aps.71.20211181
    [2] Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen. Two-dimensional self-similarity transformation theory and line rogue waves excitation. Acta Physica Sinica, 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [3] Wang Yan, Li Lu. Amplification of optical pulse train based on Peregrine rogue wave. Acta Physica Sinica, 2021, 70(22): 224213. doi: 10.7498/aps.70.20210959
    [4] Chen Zhi-Min, Duan Wen-Shan. Rouge waves in fluid-filled elastic tube. Acta Physica Sinica, 2020, 69(1): 014701. doi: 10.7498/aps.69.20191308
    [5] Zhang Jie-Fang, Jin Mei-Zhen. Excitation of rogue waves of Fokas system. Acta Physica Sinica, 2020, 69(21): 214203. doi: 10.7498/aps.69.20200710
    [6] Zhang Jie-Fang, Jin Mei-Zhen, Hu Wen-Cheng. Self-similarity transformation and two-dimensional rogue wave construction of non-autonomous Kadomtsev-Petviashvili equation. Acta Physica Sinica, 2020, 69(24): 244205. doi: 10.7498/aps.69.20200981
    [7] Wen Xiao-Yong, Wang Hao-Tian. Dynamics of localized wave solutions for a higher-order Ablowitz-Ladik equation. Acta Physica Sinica, 2020, 69(1): 010205. doi: 10.7498/aps.69.20191235
    [8] Li Min, Wang Bo-Ting, Xu Tao, Shui Juan-Juan. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation. Acta Physica Sinica, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [9] Jiang Tao, Huang Jin-Jing, Lu Lin-Guang, Ren Jin-Lian. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method. Acta Physica Sinica, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [10] Jiao Xiao-Yu, Jia Man, An Hong-Li. Convergence for Jacobi elliptic function series solutions to one kind of perturbed Kadomtsev-Petviashvili equations. Acta Physica Sinica, 2019, 68(14): 140201. doi: 10.7498/aps.68.20190333
    [11] Cui Shao-Yan, Lü Xin-Xin, Xin Jie. Collapse and evolution of wave field based on a generalized nonlinear Schrdinger equation. Acta Physica Sinica, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [12] Li Shu-Qing, Yang Guang-Ye, Li Lu. Rogue solution of Hirota equation and its transmision. Acta Physica Sinica, 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [13] Song Sha-Sha, Meng Jun-Min, Song Shi-Yan, Wang Jing, Wang Jian-Bu. Numerical simulation of internal waves propagation in deep sea by nonlinear Schr?dinger equation. Acta Physica Sinica, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [14] Song Shi-Yan, Wang Jing, Meng Jun-Min, Wang Jian-Bu, Hu Pei-Xin. Nonlinear Schr?dinger equation for internal waves in deep sea. Acta Physica Sinica, 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [15] Cheng Xue-Ping, Lin Ji, Wang Zhi-Ping. Asymptotic solutions of perturbed N-component nonlinear Schr?dinger equations. Acta Physica Sinica, 2007, 56(6): 3031-3038. doi: 10.7498/aps.56.3031
    [16] Gong Lun-Xun. Some new exact solutions of the Jacobi elliptic functions of NLS equation. Acta Physica Sinica, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [17] Ruan Hang-Yu, Li Hui-Jun. Solution of the nonlinear Schr?dinger equation using the generalized Lie group reduction method. Acta Physica Sinica, 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [18] Zhang Jie-Fang, Xu Chang-Zhi, He Bao-Gang. The variable separation approach and study on solving the variable-coefficient nonlinear Schr?dinger equation. Acta Physica Sinica, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [19] YAN KE-ZHU, TAN WEI-HAN. STATIONARY SOLUTIONS OF THE NONLINEAR SCHR?DINGER EQUATION FOR NEUTRAL ATOMS IN A HARMONIC TRAP. Acta Physica Sinica, 1999, 48(7): 1185-1191. doi: 10.7498/aps.48.1185
    [20] TIAN QIANG, MA BEN-KUN. THE FORMATION AND PROPAGATION OF DOMAINS IN SUPERLATTICES DISCUSSED WITH NONLINEAR SCHR¨ODINGER EQUATION. Acta Physica Sinica, 1999, 48(11): 2125-2130. doi: 10.7498/aps.48.2125
Metrics
  • Abstract views:  3233
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2022
  • Accepted Date:  25 December 2022
  • Available Online:  23 February 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map