Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-similarity transformation and two-dimensional rogue wave construction of non-autonomous Kadomtsev-Petviashvili equation

Zhang Jie-Fang Jin Mei-Zhen Hu Wen-Cheng

Citation:

Self-similarity transformation and two-dimensional rogue wave construction of non-autonomous Kadomtsev-Petviashvili equation

Zhang Jie-Fang, Jin Mei-Zhen, Hu Wen-Cheng
PDF
HTML
Get Citation
  • Rogue wave is a kind of natural phenomenon that is fascinating, rare, and extreme. It has become a frontier of academic research. The rogue wave is considered as a spatiotemporal local rational function solution of nonlinear wave model. There are still very few (2 + 1)-dimensional nonlinear wave models which have rogue wave solutions, in comparison with soliton and Lump waves that are found in almost all (2 + 1)-dimensional nonlinear wave models and can be solved by different methods, such as inverse scattering method, Hirota bilinear method, Darboux transform method, Riemann-Hilbert method, and homoclinic test method. The structure and evolution characteristics of the obtained (2 + 1)-dimensional rogue waves are quite different from the prototypes of the (1 + 1)-dimensional nonlinear Schrödinger equation. Therefore, it is of great value to study two-dimensional rogue waves.In this paper, the non-autonomous Kadomtsev-Petviashvili equation is first converted into the Kadomtsev-Petviashvili equation with the aid of a similar transformation, then two-dimensional rogue wave solutions represented by the rational functions of the non-autonomous Kadomtsev-Petviashvili equation are constructed based on the Lump solution of the first kind of Kadomtsev-Petviashvili equation, and their evolutionary characteristics are illustrated by images through appropriately selecting the variable parameters and the dynamic stability of two-dimensional single rogue waves is numerically simulated by the fast Fourier transform algorithm. The obtained two-dimensional rogue waves, which are localized in both space and time, can be viewed as a two-dimensional analogue to the Peregrine soliton and thus are a natural candidate for describing the rogue wave phenomena. The method presented here provides enlightenment for searching for rogue wave excitation of (2 + 1)-dimensional nonlinear wave models.We show that two-dimensional rogue waves are localized in both space and time which arise from the zero background and then disappear into the zero background again. These rogue-wave solutions to the non-autonomous Kadomtsev-Petviashvili equation generalize the rogue waves of the nonlinear Schrödinger equation into two spatial dimensions, and they could play a role in physically understanding the rogue water waves in the ocean.
      Corresponding author: Zhang Jie-Fang, Zhangjief@cuz.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61877053)
    [1]

    Pelinovsky E, Kharf C 2008 Extreme Ocean Waves (Berlin: Springer)

    [2]

    Onorato M, Osborne A R, Serio M, Bertone S 2001 Phys. Rev. Lett. 86 5831Google Scholar

    [3]

    Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V, Tarakanov V P 2017 Phys. Rev. Lett. 119 034801Google Scholar

    [4]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [5]

    Bludov Yu V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [6]

    Moslem W M 2011 Phys. Plasm. 18 032301Google Scholar

    [7]

    Stenflo L, Marklund M 2010 J. Plasm. Phys. 76 293Google Scholar

    [8]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [9]

    Müller P, Garrett C, Osborne A 2005 Oceanography 18 66Google Scholar

    [10]

    张解放, 戴朝卿 2016 65 050501Google Scholar

    Zhang J F, Dai C Q 2016 Acta Phys. Sin 65 050501Google Scholar

    [11]

    Hohmann R, Kuhl U, Stockmann H J, Kaplan L, Heller E J 2010 Phys. Rev. Lett. 104 093901Google Scholar

    [12]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov Deglin P V, McClintock E 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [13]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [14]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [15]

    Xia H, Maimbourg T, Punzmann H, Shats M 2012 Phys. Rev. Lett. 109 114502Google Scholar

    [16]

    Solli R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [17]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [18]

    Peregrine D H 1983 J. Aust. Math. Soc. Ser. B: Appl. Math. 25 16Google Scholar

    [19]

    Akhmediev N, Ankiewicz A, Soto Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [20]

    Kedziora D J, Ankiewicz A, Akhmediev N 2012 Phys. Rev. E 86 056602Google Scholar

    [21]

    Ohta Y, Yang J 2012 Proc. R. Soc. A 468 1716Google Scholar

    [22]

    Ankiewicz A, Soto Crespo J M, Akhmediev N 2010 Phys. Rev. E 81 046602Google Scholar

    [23]

    Li L J, Wu Z W, Wang J H, He J S 2013 Annals of Physics 334 198Google Scholar

    [24]

    Tao Y S, He J S 2012 Phys. Rev. E 85 026601Google Scholar

    [25]

    Chen S 2013 Phys. Rev. E 88 023202Google Scholar

    [26]

    Chan H N, Chow K W, Kedziora D J, Grimshaw R H J, Ding E 2014 Phys. Rev. E 89 032914Google Scholar

    [27]

    Zhang Y S, Guo L J, He J S 2015 Lett. Math. Phys. 105 853Google Scholar

    [28]

    Qiu D Q, He J, Zhang Y H, Porsezian K 2015 Proc. R. Soc. A 471 20150236Google Scholar

    [29]

    He J S, Xu S W, Porsezian K 2012 J. Phs. Soc. Japan 81 124007Google Scholar

    [30]

    Xu S W, He J S, Cheng Y, Porseizan K 2015 Math. Meth. Appli. Sci. 38 1106Google Scholar

    [31]

    Chen S, Song L Y 2014 Phys. Lett. A 378 1228Google Scholar

    [32]

    He J S, Wang L, Li L, Porsezian K, Erdélyi R 2014 Phys. Rev. E 89 062917Google Scholar

    [33]

    Zha Q 2013 Phys. Scr. 87 065401Google Scholar

    [34]

    Chen S, Soto Crespo J M, Baronio F, Grelu Ph, Mihalache D 2016 Opt. Express 24 15251Google Scholar

    [35]

    Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202Google Scholar

    [36]

    Chen S, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202Google Scholar

    [37]

    Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101Google Scholar

    [38]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [39]

    Wang L H, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [40]

    Ohta Y, Yang J 2012 Phys. Rev. E 86 036604Google Scholar

    [41]

    Ohta Y, Yang J 2013 J. Phys. A: Math. Theor. 46 105202Google Scholar

    [42]

    Rao J G, Porsezian K, He J S 2017 Chaos 27 083115Google Scholar

    [43]

    Guo L J, He J S, Wang L H, Cheng Y, Frantzeskakis D J, Kevrekidis P G 2020 Phys. Rev. Res. 2 033376Google Scholar

    [44]

    Wen L L, Zhang H Q 2016 Nonlinear Dyn. 86 877Google Scholar

    [45]

    Qiu D Q, Zhang Y S, He J S 2016 Commun. Nonlinear Sci. Numer. Simulat. 30 307Google Scholar

    [46]

    Jia R R, Guo R 2019 Appl. Math. Lett. 93 117Google Scholar

    [47]

    Kadomtsev B B, Petviashvili V I 1970 Sov. Phys. Dokl. 15 539

    [48]

    Ablowitz M J, Segur H 1979 J. Fluid Mech. 92 691Google Scholar

    [49]

    Pelinovsky D E, Stepanyants Y A, Kivshar Y A 1995 Phys. Rev. E 51 5016Google Scholar

    [50]

    Manakov S V, Zakharov V E, Bordag L A, Matveev V B 1977 Phys. Lett. A 63 205Google Scholar

    [51]

    Krichever I 1978 Funct. Anal. and Appl. 12 59

    [52]

    Satsuma J, Ablowitz M J 1979 J. Math. Phys. 20 1496Google Scholar

    [53]

    Pelinovsky D E, Stepanyants Y A 1993 JETP Lett. 57 24

    [54]

    Pelinovsky D E 1994 J. Math. Phys. 35 5820Google Scholar

    [55]

    Ablowitz M J, Villarroel J 1997 Phys. Rev. Lett. 78 570Google Scholar

    [56]

    Villarroel J, Ablowitz M J 1999 Comm. Math. Phys. 207 1Google Scholar

    [57]

    Biondini G, Kodama Y 2003 J. Phys. A: Math. Gen. 36 10519Google Scholar

    [58]

    Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169Google Scholar

    [59]

    Biondini G 2007 Phys. Rev. Lett. 99 064103Google Scholar

    [60]

    Ma W X 2015 Phys. Lett. A 379 1975Google Scholar

    [61]

    Singh N, Stepanyants Y 2016 Wave Motion 64 92Google Scholar

    [62]

    Hu W C, Huang W H, L u, Z M, Stepanyants Y 2018 Wave Motion 77 243Google Scholar

    [63]

    Wen X Y, Yan Z Y 2017 Commun. Nonlinear Sci. Numer. Simulat. 43 311Google Scholar

    [64]

    Yang J Y, Ma W X 2017 Nonlinear Dyn. 89 1539Google Scholar

    [65]

    Jia M, Lou S 2018 arXiv: 1803.01730 v1[nlin.SI]

    [66]

    Serkin V N, Hasegawa A 2000 Phys. Rev. Lett. 85 4502

    [67]

    Serkin V N, Hasegawa A, Belyaeva T L 2007 Phys. Rev. Lett. 98 074102Google Scholar

    [68]

    Yan Z Y, Zhang X F, Liu W M 2011 Phys. Rev. A 84 023627Google Scholar

    [69]

    Lou H G, Zhao D, He X 2009 , Phys. Rev. A 79 063802Google Scholar

    [70]

    Zhang J F, Li Y S, Meng J P, Wu L, Malomed B A 2010 Phys. Rev. A 82 033614Google Scholar

    [71]

    Dai C Q, Zhang J F 2010 Opt. Lett. 35 2651Google Scholar

    [72]

    Serkin V N, Hasegawa A, Belyaeva T L 2010 Phys. Rev. A 81 023610Google Scholar

    [73]

    Kibler B, Fatome J, Finot C, et al. 2010 Nat. Phys. 6 790Google Scholar

    [74]

    Wu L, Zhang J F, Li L, Tian Q, Porsezian K 2008 Opt. Express 16 6352Google Scholar

    [75]

    Tian Q, Wu L, Zhang J F, Malomed B A, Mihalache D, Liu W M 2011 Phys. Rev. E 83 016602Google Scholar

    [76]

    David D, Levi D, Wintemitz P 1987 Stud. Appl. Math. 76 133Google Scholar

    [77]

    Chan W L, Li K S, Li Y S 1992 J. Math. Phys. 33 3759Google Scholar

    [78]

    Lü Z S, Chen Y N 2015 Eur. Phys. J. B 88 187Google Scholar

    [79]

    Ilhan O A, Manafian J, Shahriaric M 2019 Comput. Math. App. 78 2429Google Scholar

  • 图 1  由(12)式所确定的非自治KP方程的二维单怪波演化 (a) $t \!=\! - 6$; (b)$t \!=\! - 3$; (c) $t \!=\! 0$; (d) $t \!=\! 0.5$; (e) $t \!=\! 4$; (f) $t \!=\! 8$

    Figure 1.  Evolution of two-dimensional single rogue wave propagation given in Eq. (12) for non-autonomous KP equation: (a)$t = - 6$; (b) $t = - 3$; (c) $t = 0$; (d) $t = 0.5$; (e) $t = 4$; (f) $t = 8$.

    图 2  由(13)式所确定的非自治KP方程的二维单怪波演化 (a)$t = - 6$; (b)$t = - 3$; (c)$t = 0$; (d)$t = 0.5$; (e)$t = 4$; (f)$t = 8$

    Figure 2.  Evolution of two-dimensional single rogue wave propagation given in Eq. (13) for non-autonomous KP equation: (a)$t = - 6$; (b)$t = - 3$; (c)$t = 0$; (d)$t = 0.5$; (e)$t = 4$; (f) $t = 8$.

    图 3  由(14)式所确定的非自治KP方程的二维单怪波演化 (a)$t = - 6$; (b) $t = - 3$; (c)$t = 0$; (d) $t = 0.5$; (e)$t = 4$; (f)$t = 8$

    Figure 3.  Evolution of two-dimensional single rogue wave propagation given in Eq. (14) for non-autonomous KP equation: (a)$t = - 6$; (b) $t = - 3$; (c)$t = 0$; (d)$t = 0.5$; (e)$t = 4$; (f)$t = 8$.

    图 4  由(11)式所确定的非自治KP方程的二维双怪波演化(选取$k = 1/2, l = 1/2, n = 0, m = 1, \lambda = \varepsilon = 1, \nu = 1, \chi = 0, {\upsilon _x} = 2, {\upsilon _y} = 1, a = b = 0$) (a)$t = - 6$; (b)$t = - 3$; (c)$t = 0$; (d) $t = 0.5$; (e)$t = 4$; (f)$t = 8$

    Figure 4.  Time evolution of two-dimensional double rogue waves propagation given in Eq. (11) for non-autonomous KP equation when$k = 1/2, l = 1/2, n = 0, m = 1, $ $\lambda = \varepsilon = 1, \nu = 1, \chi = 0, {\upsilon _x} = 2, {\upsilon _y} = 1, a = b = 0$: (a)$t = - 6$; (b)$t = - 3$; (c)$t = 0$; (d) $t = 0.5$; (e)$t = 4$; (f)$t = 8$.

    图 5  由(11)式所确定的非自治KP方程二维三怪波演化(选择$k = l = 1/2, n = 0, m = 1, $ $\lambda = \varepsilon = 1, \nu = 1, \chi = 0, {\upsilon _x} = 2, {\upsilon _y} = 2, a = 5000, b = 5000$) (a) $t = - 6$; (b) $t = - 3$; (c) $t = 0$; (d) $t = 0.5$; (e) $t = 4$; (f) $t = 8$

    Figure 5.  Time evolution of two-dimensional triple rogue waves propagation given in Eq. (11) for non-autonomous KP equation when $k = l = 1/2, n = 0, m = 1, \lambda = \varepsilon = 1, $ $\nu = 1, \chi = 0, {\upsilon _x} = 2, {\upsilon _y} = 1, a = 5000, b = 5000$: (a) $t = - 6$; (b) $t = - 3$; (c) $t = 0$; (d) $t = 0.5$; (e) $t = 4$; (f) $t = 8$.

    图 6  由(11)式所确定的二维双、三怪波(选取$k = 1/2, l = 1/2, n = 0, m = 1, $ $\lambda = 1, \varepsilon = 1, \nu = 1, \chi = 0, {\upsilon _x} = 2$, $\mu =0, \mu =0.8165, \mu =-0.8165$分别对应选取${\upsilon _y} = 0, {\upsilon _y} = - 2, {\upsilon _y} = 2$)

    Figure 6.  Profiles of two-dimensional double and triple rogue waves given in Eq. (11) for non-autonomous KP equation when $k = 1/2, l = 1/2, n = 0, m = 1, \lambda = 1, \varepsilon = 1, \nu = 1, $ $\chi = 0, {\upsilon _x} = 2$,$\mu =0, \mu =0.8165, \mu =-0.8165$ correspond to ${\upsilon _y}{{ = 0}}, {\upsilon _y} = - 2, {\upsilon _y} = 2$, respectively.

    图 7  加了高斯白噪声扰动后由(15)式所确定的二维单怪波演化 (a) $t = - 5$; (b) $t = - {\rm{3}}$; (c) $t = - 1$; (d) $t = 0$; (e) $t = {2}.5$; (f) $t = 4$

    Figure 7.  Evolution of two-dimensional single rogue wave determined by Eq. (15) after Gaussian white noise disturbance: (a) $t = - 5$; (b) $t = - {\rm{3}}$; (c) $t = - 1$; (d) $t = 0$; (e) $t = {2}.5$; (f) $t = 4$.

    图 8  加了高斯白噪声扰动后由(16)式所确定的二维单怪波演化 (a) $t = - 5$; (b) $t = - {\rm{3}}$, (c) $t = - 1$; (d) $t = 0$; (e) $t = {2}.5$; (f) $t = 4$

    Figure 8.  Evolution of two-dimensional single rogue wave determined by Eq. (16) after Gaussian white noise disturbance: (a) $t = - 5$; (b) $t = - {\rm{3}}$; (c) $t = - 1$; (d) $t = 0$; (e) $t = {2}.5$; (f) $t = 4$.

    图 9  在时间区间[–5, 5] x-y平面上非自治KP方程的二维单怪波最大波动值和最小波动值的解析结果和数值计算模拟的对照图 (a)对应二维单怪波((15)式); (b)对应二维单怪波((16)式); (c)在(a)中加了高斯白噪声扰动; (d)在(b)中加高斯白噪声扰动

    Figure 9.  Simulation diagram of the analytic and numerical results of the maximum and minimum fluctuations of two-dimensional single rogue waves for the non- autonomous KP equation in the x-y plane of the time interval [–5, 5]: (a) Corresponds to a two-dimensional single rogue wave (Eq. (15)); (b) Corresponds to a two- dimensional single rogue wave (Eq. (16)); (c) Gaussian white noise is added in panel (a); (d) Gaussian white noise is added in panel (b).

    Baidu
  • [1]

    Pelinovsky E, Kharf C 2008 Extreme Ocean Waves (Berlin: Springer)

    [2]

    Onorato M, Osborne A R, Serio M, Bertone S 2001 Phys. Rev. Lett. 86 5831Google Scholar

    [3]

    Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V, Tarakanov V P 2017 Phys. Rev. Lett. 119 034801Google Scholar

    [4]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [5]

    Bludov Yu V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [6]

    Moslem W M 2011 Phys. Plasm. 18 032301Google Scholar

    [7]

    Stenflo L, Marklund M 2010 J. Plasm. Phys. 76 293Google Scholar

    [8]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [9]

    Müller P, Garrett C, Osborne A 2005 Oceanography 18 66Google Scholar

    [10]

    张解放, 戴朝卿 2016 65 050501Google Scholar

    Zhang J F, Dai C Q 2016 Acta Phys. Sin 65 050501Google Scholar

    [11]

    Hohmann R, Kuhl U, Stockmann H J, Kaplan L, Heller E J 2010 Phys. Rev. Lett. 104 093901Google Scholar

    [12]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov Deglin P V, McClintock E 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [13]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [14]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [15]

    Xia H, Maimbourg T, Punzmann H, Shats M 2012 Phys. Rev. Lett. 109 114502Google Scholar

    [16]

    Solli R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [17]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [18]

    Peregrine D H 1983 J. Aust. Math. Soc. Ser. B: Appl. Math. 25 16Google Scholar

    [19]

    Akhmediev N, Ankiewicz A, Soto Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [20]

    Kedziora D J, Ankiewicz A, Akhmediev N 2012 Phys. Rev. E 86 056602Google Scholar

    [21]

    Ohta Y, Yang J 2012 Proc. R. Soc. A 468 1716Google Scholar

    [22]

    Ankiewicz A, Soto Crespo J M, Akhmediev N 2010 Phys. Rev. E 81 046602Google Scholar

    [23]

    Li L J, Wu Z W, Wang J H, He J S 2013 Annals of Physics 334 198Google Scholar

    [24]

    Tao Y S, He J S 2012 Phys. Rev. E 85 026601Google Scholar

    [25]

    Chen S 2013 Phys. Rev. E 88 023202Google Scholar

    [26]

    Chan H N, Chow K W, Kedziora D J, Grimshaw R H J, Ding E 2014 Phys. Rev. E 89 032914Google Scholar

    [27]

    Zhang Y S, Guo L J, He J S 2015 Lett. Math. Phys. 105 853Google Scholar

    [28]

    Qiu D Q, He J, Zhang Y H, Porsezian K 2015 Proc. R. Soc. A 471 20150236Google Scholar

    [29]

    He J S, Xu S W, Porsezian K 2012 J. Phs. Soc. Japan 81 124007Google Scholar

    [30]

    Xu S W, He J S, Cheng Y, Porseizan K 2015 Math. Meth. Appli. Sci. 38 1106Google Scholar

    [31]

    Chen S, Song L Y 2014 Phys. Lett. A 378 1228Google Scholar

    [32]

    He J S, Wang L, Li L, Porsezian K, Erdélyi R 2014 Phys. Rev. E 89 062917Google Scholar

    [33]

    Zha Q 2013 Phys. Scr. 87 065401Google Scholar

    [34]

    Chen S, Soto Crespo J M, Baronio F, Grelu Ph, Mihalache D 2016 Opt. Express 24 15251Google Scholar

    [35]

    Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202Google Scholar

    [36]

    Chen S, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202Google Scholar

    [37]

    Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101Google Scholar

    [38]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [39]

    Wang L H, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [40]

    Ohta Y, Yang J 2012 Phys. Rev. E 86 036604Google Scholar

    [41]

    Ohta Y, Yang J 2013 J. Phys. A: Math. Theor. 46 105202Google Scholar

    [42]

    Rao J G, Porsezian K, He J S 2017 Chaos 27 083115Google Scholar

    [43]

    Guo L J, He J S, Wang L H, Cheng Y, Frantzeskakis D J, Kevrekidis P G 2020 Phys. Rev. Res. 2 033376Google Scholar

    [44]

    Wen L L, Zhang H Q 2016 Nonlinear Dyn. 86 877Google Scholar

    [45]

    Qiu D Q, Zhang Y S, He J S 2016 Commun. Nonlinear Sci. Numer. Simulat. 30 307Google Scholar

    [46]

    Jia R R, Guo R 2019 Appl. Math. Lett. 93 117Google Scholar

    [47]

    Kadomtsev B B, Petviashvili V I 1970 Sov. Phys. Dokl. 15 539

    [48]

    Ablowitz M J, Segur H 1979 J. Fluid Mech. 92 691Google Scholar

    [49]

    Pelinovsky D E, Stepanyants Y A, Kivshar Y A 1995 Phys. Rev. E 51 5016Google Scholar

    [50]

    Manakov S V, Zakharov V E, Bordag L A, Matveev V B 1977 Phys. Lett. A 63 205Google Scholar

    [51]

    Krichever I 1978 Funct. Anal. and Appl. 12 59

    [52]

    Satsuma J, Ablowitz M J 1979 J. Math. Phys. 20 1496Google Scholar

    [53]

    Pelinovsky D E, Stepanyants Y A 1993 JETP Lett. 57 24

    [54]

    Pelinovsky D E 1994 J. Math. Phys. 35 5820Google Scholar

    [55]

    Ablowitz M J, Villarroel J 1997 Phys. Rev. Lett. 78 570Google Scholar

    [56]

    Villarroel J, Ablowitz M J 1999 Comm. Math. Phys. 207 1Google Scholar

    [57]

    Biondini G, Kodama Y 2003 J. Phys. A: Math. Gen. 36 10519Google Scholar

    [58]

    Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169Google Scholar

    [59]

    Biondini G 2007 Phys. Rev. Lett. 99 064103Google Scholar

    [60]

    Ma W X 2015 Phys. Lett. A 379 1975Google Scholar

    [61]

    Singh N, Stepanyants Y 2016 Wave Motion 64 92Google Scholar

    [62]

    Hu W C, Huang W H, L u, Z M, Stepanyants Y 2018 Wave Motion 77 243Google Scholar

    [63]

    Wen X Y, Yan Z Y 2017 Commun. Nonlinear Sci. Numer. Simulat. 43 311Google Scholar

    [64]

    Yang J Y, Ma W X 2017 Nonlinear Dyn. 89 1539Google Scholar

    [65]

    Jia M, Lou S 2018 arXiv: 1803.01730 v1[nlin.SI]

    [66]

    Serkin V N, Hasegawa A 2000 Phys. Rev. Lett. 85 4502

    [67]

    Serkin V N, Hasegawa A, Belyaeva T L 2007 Phys. Rev. Lett. 98 074102Google Scholar

    [68]

    Yan Z Y, Zhang X F, Liu W M 2011 Phys. Rev. A 84 023627Google Scholar

    [69]

    Lou H G, Zhao D, He X 2009 , Phys. Rev. A 79 063802Google Scholar

    [70]

    Zhang J F, Li Y S, Meng J P, Wu L, Malomed B A 2010 Phys. Rev. A 82 033614Google Scholar

    [71]

    Dai C Q, Zhang J F 2010 Opt. Lett. 35 2651Google Scholar

    [72]

    Serkin V N, Hasegawa A, Belyaeva T L 2010 Phys. Rev. A 81 023610Google Scholar

    [73]

    Kibler B, Fatome J, Finot C, et al. 2010 Nat. Phys. 6 790Google Scholar

    [74]

    Wu L, Zhang J F, Li L, Tian Q, Porsezian K 2008 Opt. Express 16 6352Google Scholar

    [75]

    Tian Q, Wu L, Zhang J F, Malomed B A, Mihalache D, Liu W M 2011 Phys. Rev. E 83 016602Google Scholar

    [76]

    David D, Levi D, Wintemitz P 1987 Stud. Appl. Math. 76 133Google Scholar

    [77]

    Chan W L, Li K S, Li Y S 1992 J. Math. Phys. 33 3759Google Scholar

    [78]

    Lü Z S, Chen Y N 2015 Eur. Phys. J. B 88 187Google Scholar

    [79]

    Ilhan O A, Manafian J, Shahriaric M 2019 Comput. Math. App. 78 2429Google Scholar

  • [1] Rao Ji-Guang, Chen Sheng-An, Wu Zhao-Jun, He Jin-Song. General higher-order rogue waves in the space-shifted $\mathcal{PT}$-symmetric nonlocal nonlinear Schrödinger equation. Acta Physica Sinica, 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [2] Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen. Two-dimensional self-similarity transformation theory and line rogue waves excitation. Acta Physica Sinica, 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [3] Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen. Self-similar transformation and excitation of rogue waves for (2+1)-dimensional Zakharov equation. Acta Physica Sinica, 2022, 71(8): 084204. doi: 10.7498/aps.71.20211181
    [4] Li Min, Wang Bo-Ting, Xu Tao, Shui Juan-Juan. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation. Acta Physica Sinica, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [5] Zhang Jie-Fang, Jin Mei-Zhen. Excitation of rogue waves of Fokas system. Acta Physica Sinica, 2020, 69(21): 214203. doi: 10.7498/aps.69.20200710
    [6] Jiao Xiao-Yu, Jia Man, An Hong-Li. Convergence for Jacobi elliptic function series solutions to one kind of perturbed Kadomtsev-Petviashvili equations. Acta Physica Sinica, 2019, 68(14): 140201. doi: 10.7498/aps.68.20190333
    [7] Wang Si-Jia, Gu Cheng-Lin, Liu Bo-Wen, Song You-Jian, Qian Cheng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Fast self-similar amplification through passive nonlinear pulse pre-shaping. Acta Physica Sinica, 2013, 62(14): 140601. doi: 10.7498/aps.62.140601
    [8] Lu Da-Quan, Hu Wei. Two-dimensional asynchronous fractional Fourier transform and propagation properties of beams in strongly nonlocal nonlinear medium with an elliptically symmetric response. Acta Physica Sinica, 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [9] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [10] Deng Yi-Xin, Tu Cheng-Hou, Lü Fu-Yun. Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [11] Meng Li-Min, Teng Ai-Ping, Li Ying-Jun, Cheng Tao, Zhang Jie. Two-dimensional plasma hydrodynamic of X-ray laser based on self-similarity model. Acta Physica Sinica, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [12] Liao Long-Guang, Fu Hong, Fu Xiu-Jun. Self-similar transformation and quasi-unit cell construction of quasi-periodic structure with twelve-fold rotational symmetry. Acta Physica Sinica, 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [13] Feng Jie, Xu Wen-Cheng, Liu Wei-Ci, Li Shu-Xian, Liu Song-Hao. High order dispersion effect of Ginzburg-Landau equation and its self-similar analytical solutions. Acta Physica Sinica, 2008, 57(8): 4978-4983. doi: 10.7498/aps.57.4978
    [14] Lai Xiao-Ming, Bian Bao-Min, Yang Ling, Yang Juan, Bian Niu, Li Zhen-Hua, He An-Zhi. Self-similarity model of nonsingular perfect gas universe. Acta Physica Sinica, 2008, 57(12): 7955-7962. doi: 10.7498/aps.57.7955
    [15] Feng Jie, Xu Wen-Chen, Li Shu-Xian, Chen Wei-Cheng, Song Fang, Shen Min-Chang, Liu Song-Hao. Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber. Acta Physica Sinica, 2007, 56(10): 5835-5842. doi: 10.7498/aps.56.5835
    [16] Lai Xian-Jing, Zhang Jie-Fang. More on linear superposition method for the (2+1)-dimensional nonlinear wave equations. Acta Physica Sinica, 2004, 53(12): 4065-4069. doi: 10.7498/aps.53.4065
    [17] Dong Quan-Lin, Liu Bin. . Acta Physica Sinica, 2002, 51(10): 2191-2196. doi: 10.7498/aps.51.2191
    [18] YAN ZHEN-YA, ZHANG HONG-QING. SIMILARITY REDUCTIONS FOR A NONLINEAR WAVE EQUATION WITH DAMPING TERM. Acta Physica Sinica, 2000, 49(11): 2113-2117. doi: 10.7498/aps.49.2113
    [19] FAN EN-GUI, ZHANG HONG-QING. THE SOLITARY WAVE SOLUTIONS FOR A CLASS OF NONLINEAR WAVE EQUATIONS. Acta Physica Sinica, 1997, 46(7): 1254-1258. doi: 10.7498/aps.46.1254
    [20] ZHANG MIN, TAO RUI-BAO, ZHOU SHI-XUN. THE SCALING EXPONENTS OF MASS DISTRIBUTION IN INHOMOGENEOUS COMPOSITES WITH SELF- SIMILAR STRUCTURES. Acta Physica Sinica, 1988, 37(12): 1987-1992. doi: 10.7498/aps.37.1987
Metrics
  • Abstract views:  6141
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2020
  • Accepted Date:  24 August 2020
  • Available Online:  16 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回
Baidu
map