搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维自相似变换理论和线怪波激发

张解放 俞定国 金美贞

引用本文:
Citation:

二维自相似变换理论和线怪波激发

张解放, 俞定国, 金美贞

Two-dimensional self-similarity transformation theory and line rogue waves excitation

Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen
PDF
HTML
导出引用
  • 我们提出了二维自相似变换理论, 以聚焦的(2 + 1)维NLS方程(数学称为抛物型的非线性微分方程)为模型, 构建了它被转变为聚焦的(1 + 1)维NLS方程的二维自相似变换, 深入研究了它的空间怪波激发, 发现除了(1 + 1)维NLS方程的Peregrine孤子、高阶怪波和多怪波诱导的线怪波所具有的短寿命特征外, 由Akhmediev呼吸子(AB)和Kuznetsov-Ma孤子(KMS)诱导的线怪波也具有这种短寿命特征. 这与由亮孤子(包括多孤子)诱导的空间相干结构保持形状和幅值不变的演化特征完全不同. 通过图示展现了本文例举的各类线怪波的演化规律. 本文揭示的线怪波激发新机制, 有助于提升对高维非线性波动模型的相干结构的新认识.
    A two-dimensional self-similarity transformation theory is established, and the focusing (parabolic) (2 + 1)-dimensional NLS equation is taken as the model. The two-dimensional self-similarity transformation is proposed for converting the focusing (2 + 1)-dimensional NLS equation into the focusing (1 + 1) dimensional NLS equations, and the excitation of its novel line-rogue waves is further investigated. It is found that the spatial coherent structures induced by the Akhmediev breathers (AB) and Kuznetsov-Ma solitons (KMS) also have the short-lived characteristics which are possessed by the line-rogue waves induced by the Peregrine solitons, and the other higher-order rogue waves and the multi-rogue waves of the (1 + 1) dimensional NLS equations. This is completely different from the evolution characteristics of spatially coherent structures induced by bright solitons (including multi-solitons and lump solutions), with their shapes and amplitudes kept unchanged. The diagram shows the evolution characteristics of all kinds of resulting line rogue waves. The new excitation mechanism of line rogue waves revealed contributes to the new understanding of the coherent structure of high-dimensional nonlinear wave models.
      通信作者: 张解放, Zhangjief@cuz.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61877053)资助的课题
      Corresponding author: Zhang Jie-Fang, Zhangjief@cuz.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61877053)
    [1]

    Onorato M, Osborne A R, Serio M, Bertone S 2001 Phys. Rev. Lett. 86 5831Google Scholar

    [2]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean. In: Advances in Geophysical and Environmental Mechanics and Mathematics (Berlin: Springer-Verlag)

    [3]

    Adcock T A A, Taylor P H 2014 Rep. Prog. Phys. 77 105901Google Scholar

    [4]

    Dudley J M, Genty G, Eggleton B J 2008 Opt. Express 16 3644Google Scholar

    [5]

    Kasparian J, Bejot P, Wolf J P, Dudley J M 2009 Opt. Express 17 12070Google Scholar

    [6]

    Shukla P K, Moslem W M 2012 Phys. Lett. A 376 1125Google Scholar

    [7]

    Tsai Y Y, Tsai Y, Lin I 2016 Nature Phys. 12 573Google Scholar

    [8]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [9]

    Vinayagam P S, Radha R, Porsezian K 2013 Phys. Rev. E 88 042906Google Scholar

    [10]

    Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V, Tarakanov V P 2017 Phys. Rev. Lett. 119 034801Google Scholar

    [11]

    Hohmann R, Kuhl U, Stockmann H J, Kaplan L, Heller E J 2010 Phys. Rev. Lett. 104 093901Google Scholar

    [12]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P, McClintock P V E 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [13]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293Google Scholar

    [14]

    Hammani K, Kibler B, Finot C, Morin P, Millot G P 2011 Opt. Lett. 36 112Google Scholar

    [15]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [16]

    Yan Z Y 2011 Phys. Lett. A 375 4274

    [17]

    Han J F, Liang T, Duan W S 2019 Euro. Phys. J. E 42 5Google Scholar

    [18]

    Copus M G, Camley R E 2020 Phys. Rev. B 102 220410Google Scholar

    [19]

    Dysthe K, Krogstad H, Muller P 2008 Ann. Rev. Flu. Mech. 40 287Google Scholar

    [20]

    Benetazzo A, Ardhuin F, Bergamasco F, Cavaleri L, Guimarães P V, Schwendeman M, Sclavo M, Thomson J, Torsello A 2017 Sci. Rep. 7 8276

    [21]

    Peregrine D H 1983 J. Aust. Math. Soc. B 25 16Google Scholar

    [22]

    Akhmediev N, Korneev V I 1986 Theor. Math. Phys. 69 1089Google Scholar

    [23]

    Kuznetsov E 1977 Sov. Phys. Dokl. 22 507Google Scholar

    [24]

    Ma Y C 1979 Stud. Appl. Math. 60 43

    [25]

    Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [26]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [27]

    Dubard P, Matveev V B 2011 Nat. Hazards Earth Syst. Sci. 11 667Google Scholar

    [28]

    Ankiewicz A, Clarkson P A, Akhmediev N 2010 J. Phys. A 43 122002Google Scholar

    [29]

    Kedziora D J, Ankiewicz A, Akhmediev N 2011 Phys. Rev. E 84 056611Google Scholar

    [30]

    Zhao L C, Guo B, Ling L 2016 J. Math. Phys. 57 043508Google Scholar

    [31]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [32]

    Soto-Crespo J M, Devine N, Akhmediev N 2016 Phys. Rev. Lett. 116 103901Google Scholar

    [33]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [34]

    Ohta Y, Yang J K 2012 Proc. R. Soc. Lond. Ser. A 468 1716Google Scholar

    [35]

    Christian K, Efim P 2003 Euro. J. Mech. B Fluids 22 603

    [36]

    Wang L H, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [37]

    Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nature Photo. 8 755Google Scholar

    [38]

    Zhang X E, Chen Y, Tang X Y 2018 Comput. Math. Appl. 76 1938Google Scholar

    [39]

    Chen J C, Chen Y, Feng B F, Maruno K, Ohta Y 2018 J. Phys. Soc. Jpn. 87 094007Google Scholar

    [40]

    Wang M M, Chen Y 2021 Nonlinear Dyn. 104 2621Google Scholar

    [41]

    Wang M M, Chen Y 2021 Nonlinear Dyn. 98 1781Google Scholar

    [42]

    Birkholz S, Nibbering E T J 2013 Phys. Rev. Lett. 111 243903Google Scholar

    [43]

    Solli D R Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [44]

    Solli D R, Ropers C, Jalali B 2008 Phys. Rev. Lett. 101 233902Google Scholar

    [45]

    Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F, Dudley J M 2012 Sci. Rep. 2 463Google Scholar

    [46]

    Chabchoub A, Hoffmannn N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [47]

    Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [48]

    Xiong H, Gan J H, Wu Y 2017 Phys. Rev. Lett. 119 153901Google Scholar

    [49]

    张解放, 金美贞, 胡文成 2020 69 244205Google Scholar

    Zhang J F, Jin M Z, Hu W C 2020 Acta Phys. Sin. 69 244205Google Scholar

    [50]

    张解放, 金美贞 2020 69 214203Google Scholar

    Zhang J F, Jin M Z 2020 Acta Phys. Sin. 69 214203Google Scholar

    [51]

    Martin D U, Yuen H C 1980 Wave Motion 2 215Google Scholar

    [52]

    Carter J D, Segur H 2003 Phys. Rev. E 68 045601Google Scholar

    [53]

    Manakov S V 1974 Sov. Phys. JETP 38 248

    [54]

    Pecseli H L 1985 IEEE Trans. Plasma Sci. 13 53Google Scholar

    [55]

    Gross E P 1963 J. Math Phys. 4 195Google Scholar

    [56]

    Pitaevskii L P 1961 Sov. Phys. JETP 13 451Google Scholar

    [57]

    Benney D J, Roskes G J 1969 Stud. Appl. Math. 48 377Google Scholar

    [58]

    Myra J R and Liu C S 1980 Phys. Fluids 23 2258Google Scholar

    [59]

    Gorza S P, Roig N 2004 Phys. Rev. Lett. 92 084101Google Scholar

    [60]

    Gorza S P, Kockaert P, Emplit P, Haelterman M 2009 Phys. Rev. Lett. 102 13410Google Scholar

    [61]

    Fermann M E 2000 Phys. Rev. Lett. 84 6010Google Scholar

    [62]

    Ankiewicz A, Kedziora D J, Akhmediev N 2011 Phys. Lett. A 375 2782Google Scholar

    [63]

    Kedziora D J, Ankiewicz A, Akhmediev N 2012 Phys. Rev. E 86 056602Google Scholar

    [64]

    Ohta Y, Yang J K 2012 Proc. R. Soc. A 468 1716Google Scholar

    [65]

    Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N, Chabchoub A 2016 Sci. Rep. 6 8516Google Scholar

  • 图 1  一阶单线怪波(28)在$ (x, y) $-平面上随 $ t $ 的演化图: (a)$ t = - 3 $; (b) $ t = 0 $; (c) $ t = 5 $, 自由参数选取为$\alpha = \beta = \lambda = 1,$ $\gamma = 2, {\kappa _0} = {\iota _0} = - {a_0} = {{ {b}}_0} = 1$

    Fig. 1.  Evolution plots of the first-order single line-rogue wave (28) with the $ t $ on the$ (x, y) $-plane. (a)$ t = - 3 $; (b)$ t = 0 $; (c)$ t = 5 $. The free parameters are chosen as $ \alpha = \beta = 1, $$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1$

    图 2  二阶单线怪波(29)在$ (x, y) $-平面上随 $ t $ 的演化图: (a)$ t = - 3 $; (b) $ t = 0 $; (c) $ t = 5 $, 自由参数选取为$ \alpha = \beta = \lambda = 1, $$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{{b}}_0} = 1$, $ {\xi _d} = {\tau _d} = 0 $

    Fig. 2.  Evolution plots of the second-order single line-rogue wave (29) with the $ t $ on the$ (x, y) $-plane. (a)$ t = - 3 $; (b)$ t = $$ 0 $; (c)$ t = 5 $. The free parameters are chosen as $ \alpha = \beta = 1, $$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{{b}}_0} = 1, {\xi _d} = {\tau _d} = 0$

    图 3  双线怪波(37)在$ (x, y) $-平面上随 $ t $ 的演化图: (a)$ t = - 3 $; (b) $ t = 0 $; (c) $ t = 5 $, 自由参数选取为$\alpha = $$ \beta = \lambda = 1,$$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1$, $\delta = 25, \mu = 100$

    Fig. 3.  Evolution plots of the double line-rogue wave (37) with $ t $on the$ (x, y) $-plane. (a)$ t = - 3 $; (b)$ t = 0 $; (c)$ t = 5 $.The free parameters are chosen as $ \alpha = \beta = 1, $$\gamma = 2,~ {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1, ~\delta = 25, \mu = 100$

    图 4  多线怪波(38)在$ (x, y) $-平面上随 $ t $ 的演化图: (a)$ t = - 3 $; (b) $ t = 0 $; (c) $ t = 5 $, 自由参数选取为$ \alpha = \beta = \lambda = 1, $$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1$, $a = 0.45$

    Fig. 4.  Evolution plots of the multi-line rogue wave (38) with $ t $on the$ (x, y) $-plane. (a)$ t = - 3 $; (b)$ t = 0 $; (c)$ t = 5 $. The free parameters are chosen as $ \alpha = \beta = 1, $$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1, a = 0.45$

    图 5  线怪波(39)在$ (x, y) $-平面上随 $ t $ 的演化图 (a)$ t = - 3 $, (b) $ t = 0 $, (c) $ t = 5 $, 自由参数选取为$ \alpha = \beta = \lambda = 1, $$\gamma = 2, $$ {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1$, $a = 0.45$

    Fig. 5.  Evolution plots of the line rogue waves (39) with $ t $ on the$ (x, y) $-plane. (a)$ t = - 3 $; (b)$ t = 0 $; (c)$ t = 5 $. The free parameters are chosen as $ \alpha = \beta = 1, $$\gamma = 2, {\kappa _0} = {\iota _0} = -{a_0} = {{ {b}}_0} = 1, a = 0.45$

    Baidu
  • [1]

    Onorato M, Osborne A R, Serio M, Bertone S 2001 Phys. Rev. Lett. 86 5831Google Scholar

    [2]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean. In: Advances in Geophysical and Environmental Mechanics and Mathematics (Berlin: Springer-Verlag)

    [3]

    Adcock T A A, Taylor P H 2014 Rep. Prog. Phys. 77 105901Google Scholar

    [4]

    Dudley J M, Genty G, Eggleton B J 2008 Opt. Express 16 3644Google Scholar

    [5]

    Kasparian J, Bejot P, Wolf J P, Dudley J M 2009 Opt. Express 17 12070Google Scholar

    [6]

    Shukla P K, Moslem W M 2012 Phys. Lett. A 376 1125Google Scholar

    [7]

    Tsai Y Y, Tsai Y, Lin I 2016 Nature Phys. 12 573Google Scholar

    [8]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [9]

    Vinayagam P S, Radha R, Porsezian K 2013 Phys. Rev. E 88 042906Google Scholar

    [10]

    Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V, Tarakanov V P 2017 Phys. Rev. Lett. 119 034801Google Scholar

    [11]

    Hohmann R, Kuhl U, Stockmann H J, Kaplan L, Heller E J 2010 Phys. Rev. Lett. 104 093901Google Scholar

    [12]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P, McClintock P V E 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [13]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293Google Scholar

    [14]

    Hammani K, Kibler B, Finot C, Morin P, Millot G P 2011 Opt. Lett. 36 112Google Scholar

    [15]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [16]

    Yan Z Y 2011 Phys. Lett. A 375 4274

    [17]

    Han J F, Liang T, Duan W S 2019 Euro. Phys. J. E 42 5Google Scholar

    [18]

    Copus M G, Camley R E 2020 Phys. Rev. B 102 220410Google Scholar

    [19]

    Dysthe K, Krogstad H, Muller P 2008 Ann. Rev. Flu. Mech. 40 287Google Scholar

    [20]

    Benetazzo A, Ardhuin F, Bergamasco F, Cavaleri L, Guimarães P V, Schwendeman M, Sclavo M, Thomson J, Torsello A 2017 Sci. Rep. 7 8276

    [21]

    Peregrine D H 1983 J. Aust. Math. Soc. B 25 16Google Scholar

    [22]

    Akhmediev N, Korneev V I 1986 Theor. Math. Phys. 69 1089Google Scholar

    [23]

    Kuznetsov E 1977 Sov. Phys. Dokl. 22 507Google Scholar

    [24]

    Ma Y C 1979 Stud. Appl. Math. 60 43

    [25]

    Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [26]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [27]

    Dubard P, Matveev V B 2011 Nat. Hazards Earth Syst. Sci. 11 667Google Scholar

    [28]

    Ankiewicz A, Clarkson P A, Akhmediev N 2010 J. Phys. A 43 122002Google Scholar

    [29]

    Kedziora D J, Ankiewicz A, Akhmediev N 2011 Phys. Rev. E 84 056611Google Scholar

    [30]

    Zhao L C, Guo B, Ling L 2016 J. Math. Phys. 57 043508Google Scholar

    [31]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [32]

    Soto-Crespo J M, Devine N, Akhmediev N 2016 Phys. Rev. Lett. 116 103901Google Scholar

    [33]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [34]

    Ohta Y, Yang J K 2012 Proc. R. Soc. Lond. Ser. A 468 1716Google Scholar

    [35]

    Christian K, Efim P 2003 Euro. J. Mech. B Fluids 22 603

    [36]

    Wang L H, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [37]

    Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nature Photo. 8 755Google Scholar

    [38]

    Zhang X E, Chen Y, Tang X Y 2018 Comput. Math. Appl. 76 1938Google Scholar

    [39]

    Chen J C, Chen Y, Feng B F, Maruno K, Ohta Y 2018 J. Phys. Soc. Jpn. 87 094007Google Scholar

    [40]

    Wang M M, Chen Y 2021 Nonlinear Dyn. 104 2621Google Scholar

    [41]

    Wang M M, Chen Y 2021 Nonlinear Dyn. 98 1781Google Scholar

    [42]

    Birkholz S, Nibbering E T J 2013 Phys. Rev. Lett. 111 243903Google Scholar

    [43]

    Solli D R Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [44]

    Solli D R, Ropers C, Jalali B 2008 Phys. Rev. Lett. 101 233902Google Scholar

    [45]

    Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F, Dudley J M 2012 Sci. Rep. 2 463Google Scholar

    [46]

    Chabchoub A, Hoffmannn N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [47]

    Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [48]

    Xiong H, Gan J H, Wu Y 2017 Phys. Rev. Lett. 119 153901Google Scholar

    [49]

    张解放, 金美贞, 胡文成 2020 69 244205Google Scholar

    Zhang J F, Jin M Z, Hu W C 2020 Acta Phys. Sin. 69 244205Google Scholar

    [50]

    张解放, 金美贞 2020 69 214203Google Scholar

    Zhang J F, Jin M Z 2020 Acta Phys. Sin. 69 214203Google Scholar

    [51]

    Martin D U, Yuen H C 1980 Wave Motion 2 215Google Scholar

    [52]

    Carter J D, Segur H 2003 Phys. Rev. E 68 045601Google Scholar

    [53]

    Manakov S V 1974 Sov. Phys. JETP 38 248

    [54]

    Pecseli H L 1985 IEEE Trans. Plasma Sci. 13 53Google Scholar

    [55]

    Gross E P 1963 J. Math Phys. 4 195Google Scholar

    [56]

    Pitaevskii L P 1961 Sov. Phys. JETP 13 451Google Scholar

    [57]

    Benney D J, Roskes G J 1969 Stud. Appl. Math. 48 377Google Scholar

    [58]

    Myra J R and Liu C S 1980 Phys. Fluids 23 2258Google Scholar

    [59]

    Gorza S P, Roig N 2004 Phys. Rev. Lett. 92 084101Google Scholar

    [60]

    Gorza S P, Kockaert P, Emplit P, Haelterman M 2009 Phys. Rev. Lett. 102 13410Google Scholar

    [61]

    Fermann M E 2000 Phys. Rev. Lett. 84 6010Google Scholar

    [62]

    Ankiewicz A, Kedziora D J, Akhmediev N 2011 Phys. Lett. A 375 2782Google Scholar

    [63]

    Kedziora D J, Ankiewicz A, Akhmediev N 2012 Phys. Rev. E 86 056602Google Scholar

    [64]

    Ohta Y, Yang J K 2012 Proc. R. Soc. A 468 1716Google Scholar

    [65]

    Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N, Chabchoub A 2016 Sci. Rep. 6 8516Google Scholar

  • [1] 饶继光, 陈生安, 吴昭君, 贺劲松. 空间位移$\mathcal{PT}$对称非局域非线性薛定谔方程的高阶怪波解.  , 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [2] 张解放, 俞定国, 金美贞. (2+1)维Zakharov方程的自相似变换和线怪波簇激发.  , 2022, 71(8): 084204. doi: 10.7498/aps.71.20211181
    [3] 王艳, 李禄. 基于怪波实现光脉冲串的全光放大.  , 2021, 70(22): 224213. doi: 10.7498/aps.70.20210959
    [4] 张解放, 金美贞, 胡文成. 非自治Kadomtsev-Petviashvili方程的自相似变换和二维怪波构造.  , 2020, 69(24): 244205. doi: 10.7498/aps.69.20200981
    [5] 陈智敏, 段文山. 弹性管中的怪波.  , 2020, 69(1): 014701. doi: 10.7498/aps.69.20191308
    [6] 闻小永, 王昊天. 高阶Ablowitz-Ladik方程的局域波解及稳定性分析.  , 2020, 69(1): 010205. doi: 10.7498/aps.69.20191235
    [7] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制.  , 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [8] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [9] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变.  , 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [10] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究.  , 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [11] 胡文成, 张解放, 赵辟, 楼吉辉. 光纤放大器中非自治光畸波的传播控制研究.  , 2013, 62(2): 024216. doi: 10.7498/aps.62.024216
    [12] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播.  , 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [13] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究.  , 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [14] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播.  , 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [15] 余超凡, 梁国栋, 曹锡金. 一维分子晶体系统的极化子-孤子压缩态、系统基态性质和量子涨落.  , 2008, 57(7): 4402-4411. doi: 10.7498/aps.57.4402
    [16] 雷 霆, 涂成厚, 李恩邦, 李勇男, 郭文刚, 魏 岱, 朱 辉, 吕福云. 高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟.  , 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [17] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解.  , 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [18] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程.  , 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [19] 陈宏平, 王 箭, 何国光. 光脉冲传输数值模拟的分步小波方法.  , 2005, 54(6): 2779-2783. doi: 10.7498/aps.54.2779
    [20] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子.  , 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
计量
  • 文章访问数:  4257
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-06
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回
Baidu
map