-
Nanocomposite magnet consisting of a fine mixture of magnetically hard and soft phase has received much attention for potential permanent magnet development. One of the important requirements for alloys to exhibit excellent magnetic properties is a nanocrystalline grain size. The soft and hard magnetic phases can simultaneously achieve ideal nanoscale composites. The effect of Ti additions in the amorphous crystallization process of the exchange-coupled nanocomposite Nd2Fe14B/α-Fe magnet prepared by melt spinning is investigated. The results show that Ti can change the crystallization kinetics of the NdFeB melt-spun ribbons. The Ti can increase the activation energy of α-Fe and contrarily reduce the activation energy of a metastable 1∶7 phase, so the growth speed of α-Fe decreases and the metastable 1∶7 phase can stably precipitate from the amorphous phase. When the annealing temperature increases, a metastable 1∶7 phase is decomposed into the α-Fe phase and the Nd2Fe14B phase. The microstructure observation shows that the grains of the alloys doped with Ti are fine and uniform, with an average grain size of about 20 nm, and no particularly large α-Fe particles appear. The optimal magnetic property is (BH)max = 12 MG·Oe (1 G = 10–4 T, 1 Oe = 79.57795 A/m) when Ti addition is 1.0%.
-
Keywords:
- permanent magnet /
- crystallization process /
- doping /
- nanocomposite
[1] Zeng H, Li J, Liu J P, Wang Z L, Sun S 2002 Nature 420 395
Google Scholar
[2] Liu Z, He J, Ramanujan R V 2021 Mater. Des. 209 110004
Google Scholar
[3] Quesada A, Granados-Miralles C, López-Ortega A, Erokhin S, Lottini E, Pedrosa J, Bollero A, Aragón A M, Rubio-Marcos F, Stingaciu M, Bertoni G, Fernández C de J, Sangregorio C, Fernández J F, Berkov D, Christensen M 2016 Adv. Electron. Mater. 2 1500365
Google Scholar
[4] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安 2006 55 3049
Google Scholar
Pang L J, Sun G F, Chen J F, Qiang W J, Zhang J B, Li W A 2006 Acta Phys. Sin. 55 3049
Google Scholar
[5] Hernando A, Gonzalez J M 2000 Hyperfine Interact. 130 221
Google Scholar
[6] 夏静, 张溪超, 赵国平 2013 62 227502
Google Scholar
Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502
Google Scholar
[7] Yang C J, Park E B 1997 J. Magn. Magn. Mater. 168 278
Google Scholar
[8] Mohseni F, Pullar R C, Vieira J M, Amaral J S 2020 J. Phys. D:Appl. Phys. 53 494003
Google Scholar
[9] Kuma J, Kitajima N, Kanai Y, Fukunaga H 1998 J. Appl. Phys. 83 6623
[10] Attyabi S N, Radmanesh S M A, Seyyed Ebrahimi S A, Dehghan H 2022 J. Supercond. Novel Magn. 35 1229
Google Scholar
[11] Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812
Google Scholar
[12] Bauer J, Seager M, Zerm A, Kronmüller H 1996 J. Appl. Phys. 80 1667
Google Scholar
[13] Deng W K, Wei B N, Shan W K, Hua Y X, Li X, Guo D F 2021 Physica B 620 413263
Google Scholar
[14] Ma Y, Yin X, Shao B, Yang Q, Shen Q, Zhou X, Sun J, Guo D, Li K 2019 J. Mater. Sci. 54 2658
Google Scholar
[15] Yang S, Song X P, Li S, Liu X, Tian Z, Gu B, Du Y 2003 J. Magn. Magn. Mater. 263 134
[16] Ngo H M, Lee G, Haider S K, Pal U, Hawari T, Kim K M, Kim J, Kwon H, Kang Y S 2021 RSC Adv. 11 32376
Google Scholar
[17] Kim C, Ding S L, O Y J, Zha L, Yun C, Yang W Y, Han J Z, Liu S Q, Du H L, Wang C S, Yang J B 2021 J. Phys. D:Appl. Phys. 54 245003
Google Scholar
[18] 何学敏, 钟伟, 都有为 2018 67 227501
Google Scholar
He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501
Google Scholar
[19] Semaida A M, Bordyuzhin I G, El-Dek S I, Kutzhanov M K, Menushenkov V P, Savchenko A G 2021 Mater. Res. Express 8 076101
Google Scholar
[20] Wang Y, Song W, Huang G 2022 J. Supercond. Novel Magn. 35 1261
Google Scholar
[21] Pan M, Li Z, Wu Q, Ge H, Xu H 2019 J. Magn. Magn. Mater. 471 457
Google Scholar
[22] Zhang S Y, Xu H, Ni J S, Wang H L, Hou X L, Dong Y D 2007 Physica B 393 153
Google Scholar
[23] Zhang W, Zhang S, Yan A, Zhang H, Shen B 2001 J. Magn. Magn. Mater. 225 389
Google Scholar
[24] Yang S, Song X, Gu B, Du Y 2005 J. Alloys Compd. 394 1
Google Scholar
[25] Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997
Google Scholar
[26] Ping D H, Hono K, Kanekiyo H, Hirosawa S 1999 Acta Mater. 47 4641
Google Scholar
[27] Yang S, Song X, Du Y 2003 Microelectron. Eng. 66 121
Google Scholar
[28] Kelly P E, O’Grady K, Chantrell R W 1989 IEEE Trans. Magn. 25 3881
Google Scholar
[29] Wohlfarth E P 1958 J. Appl. Phys. 29 595
-
图 3 (a) Nd8Fe86B6合金快淬带650 ℃晶化10 min后局部TEM图谱; Nd8Fe85Ti1B6合金快淬带在不同温度下晶化3 min后的TEM图谱 (b) 快淬; (c) 600 ℃; (d) 650 ℃; (e) 700 ℃. 插图为对应的高分辨电子衍射谱
Figure 3. TEM micrographs of (a) Nd8Fe86B6 ribbons annealed at 650 ℃ for 10 min, and Nd8Fe85Ti1B6 ribbons annealed at different temperature for 3 min: (b) as-spun; (c) 600 ℃; (d) 650 ℃; (e) 700 ℃. The insets are the corresponding electron diffraction patterns.
-
[1] Zeng H, Li J, Liu J P, Wang Z L, Sun S 2002 Nature 420 395
Google Scholar
[2] Liu Z, He J, Ramanujan R V 2021 Mater. Des. 209 110004
Google Scholar
[3] Quesada A, Granados-Miralles C, López-Ortega A, Erokhin S, Lottini E, Pedrosa J, Bollero A, Aragón A M, Rubio-Marcos F, Stingaciu M, Bertoni G, Fernández C de J, Sangregorio C, Fernández J F, Berkov D, Christensen M 2016 Adv. Electron. Mater. 2 1500365
Google Scholar
[4] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安 2006 55 3049
Google Scholar
Pang L J, Sun G F, Chen J F, Qiang W J, Zhang J B, Li W A 2006 Acta Phys. Sin. 55 3049
Google Scholar
[5] Hernando A, Gonzalez J M 2000 Hyperfine Interact. 130 221
Google Scholar
[6] 夏静, 张溪超, 赵国平 2013 62 227502
Google Scholar
Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502
Google Scholar
[7] Yang C J, Park E B 1997 J. Magn. Magn. Mater. 168 278
Google Scholar
[8] Mohseni F, Pullar R C, Vieira J M, Amaral J S 2020 J. Phys. D:Appl. Phys. 53 494003
Google Scholar
[9] Kuma J, Kitajima N, Kanai Y, Fukunaga H 1998 J. Appl. Phys. 83 6623
[10] Attyabi S N, Radmanesh S M A, Seyyed Ebrahimi S A, Dehghan H 2022 J. Supercond. Novel Magn. 35 1229
Google Scholar
[11] Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812
Google Scholar
[12] Bauer J, Seager M, Zerm A, Kronmüller H 1996 J. Appl. Phys. 80 1667
Google Scholar
[13] Deng W K, Wei B N, Shan W K, Hua Y X, Li X, Guo D F 2021 Physica B 620 413263
Google Scholar
[14] Ma Y, Yin X, Shao B, Yang Q, Shen Q, Zhou X, Sun J, Guo D, Li K 2019 J. Mater. Sci. 54 2658
Google Scholar
[15] Yang S, Song X P, Li S, Liu X, Tian Z, Gu B, Du Y 2003 J. Magn. Magn. Mater. 263 134
[16] Ngo H M, Lee G, Haider S K, Pal U, Hawari T, Kim K M, Kim J, Kwon H, Kang Y S 2021 RSC Adv. 11 32376
Google Scholar
[17] Kim C, Ding S L, O Y J, Zha L, Yun C, Yang W Y, Han J Z, Liu S Q, Du H L, Wang C S, Yang J B 2021 J. Phys. D:Appl. Phys. 54 245003
Google Scholar
[18] 何学敏, 钟伟, 都有为 2018 67 227501
Google Scholar
He X M, Zhong W, Du Y W 2018 Acta Phys. Sin. 67 227501
Google Scholar
[19] Semaida A M, Bordyuzhin I G, El-Dek S I, Kutzhanov M K, Menushenkov V P, Savchenko A G 2021 Mater. Res. Express 8 076101
Google Scholar
[20] Wang Y, Song W, Huang G 2022 J. Supercond. Novel Magn. 35 1261
Google Scholar
[21] Pan M, Li Z, Wu Q, Ge H, Xu H 2019 J. Magn. Magn. Mater. 471 457
Google Scholar
[22] Zhang S Y, Xu H, Ni J S, Wang H L, Hou X L, Dong Y D 2007 Physica B 393 153
Google Scholar
[23] Zhang W, Zhang S, Yan A, Zhang H, Shen B 2001 J. Magn. Magn. Mater. 225 389
Google Scholar
[24] Yang S, Song X, Gu B, Du Y 2005 J. Alloys Compd. 394 1
Google Scholar
[25] Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997
Google Scholar
[26] Ping D H, Hono K, Kanekiyo H, Hirosawa S 1999 Acta Mater. 47 4641
Google Scholar
[27] Yang S, Song X, Du Y 2003 Microelectron. Eng. 66 121
Google Scholar
[28] Kelly P E, O’Grady K, Chantrell R W 1989 IEEE Trans. Magn. 25 3881
Google Scholar
[29] Wohlfarth E P 1958 J. Appl. Phys. 29 595
Catalog
Metrics
- Abstract views: 4806
- PDF Downloads: 77
- Cited By: 0