Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of mode field distribution in optical Fabry-Perot cavity based on nanofiber

Hu Yu-Dong Song Li-Jun Wang Chen-Xi Zhang Pei Zhou Jing Li Gang Zhang Peng-Fei Zhang Tian-Cai

Citation:

Characterization of mode field distribution in optical Fabry-Perot cavity based on nanofiber

Hu Yu-Dong, Song Li-Jun, Wang Chen-Xi, Zhang Pei, Zhou Jing, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai
PDF
HTML
Get Citation
  • The composite cavity optomechanical system combining optical Fabry-Perot (F-P) cavities, particles, and micro/nano mechanical oscillators is becoming more significant in the researches and applications of the fundamental physics, quantum information processing, and precision measurement. Characterizing the mode field distribution of optical F-P cavity is significant prior to the application of optical F-P cavity. In this paper, we propose and demonstrate a method to measure the waist of an optical F-P cavity and to characterize the mode field distribution of the optical F-P cavity by using a nanofiber nondestructively. In experiment, a nanofiber is placed in the mode of the optical F-P cavity with a fineness of around 1500. The optical F-P cavity is composed of two mirrors each with high reflectivity of 99.8%. The radius of curvature of the each mirror is 50 mm. The cavity length is ($ 80 \pm 4 $) mm. The nanofiber is fabricated from a single-mode fiber by the flame-brush method. The nanofiber diameter is around 440 nm. The transmission spectra of the optical F-P cavity are measured by scanning the cavity length. The free spectrum ranges and the inner cavity losses can be obtained from the transmission spectra. First, the influence of the nanofiber on the optical F-P cavity fineness is investigated. The fineness as a function of nanofiber position along the radial direction of the optical F-P cavity is measured. The fineness caused by the nanofiber decreases to a minimum value of about 240. Second, it is investigated that the optical F-P cavity inner loss caused by the nanofiber as a function of the nanofiber position along the radial direction of the optical F-P cavity when the nanofiber is placed at the waist of the optical F-P cavity. The inner loss of the optical F-P cavity caused by the nanofiber is related to the intensity distribution of the optical F-P cavity mode field, which is predicted theoretically. Thus, by making the Gaussian fitting of the optical F-P cavity inner loss as a function of the nanofiber position, we can obtain a waist radius of the optical F-P cavity to be ($ 72 \pm 1 $) μm. This is in good agreement with the theoretical calculation. Finally, the mode field distribution of the optical F-P cavity along the cavity axis is characterized. This method can be used for precisely controlling the coupling between the particles on the surface of nanofiber and optical F-P cavity. Besides, this method provides a good platform for studying the hybrid optomechanical system combining cavities, photons and quantum emitters.
      Corresponding author: Zhang Peng-Fei, zhangpengfei@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278) and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    张智明 2015 量子光学 (北京: 科学出版社) 第184—193页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp184–193 (in Chinese)

    [2]

    李刚, 张鹏飞, 杨鹏飞, 王志辉, 张天才 2022 光学学报 42 76

    Li G, Zhang P F, Yang P F, Wang Z H, Zhang T C 2022 Acta Opt. Sin. 42 76

    [3]

    Walther H, Varcoe B T H, Englert B-G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [4]

    张天才, 毋伟, 杨鹏飞, 李刚, 张鹏飞 2021 光学学报 41 392

    Zhang T C, Wu W, Yang P F, Li G, Zhang P F 2021 Acta Opt. Sin. 41 392

    [5]

    Vahala K J 2003 Nature 424 839Google Scholar

    [6]

    宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 68 074204Google Scholar

    Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar

    [7]

    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A 1992 Appl. Phys. Lett. 60 289Google Scholar

    [8]

    Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar

    [9]

    Ruddell S K, Webb K E, Herrera I, Parkins A S, Hoogerland M D 2017 Optica 4 576Google Scholar

    [10]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [11]

    Zhang Q Q, Fan Z Y, Zhang J P, Zhang F B, Zhang Q, Li Y M 2020 Appl. Opt. 59 8959Google Scholar

    [12]

    成凡, 张鹏飞, 王鑫, 张天才 2017 量子光学学报 23 74

    Cheng F, Zhang P F, Wang X, Zhang T C 2017 J. Quantum Opt. 23 74

    [13]

    Vučković J, Lončar M, Mabuchi H, Scherer A 2001 Phys. Rev. E 65 016608Google Scholar

    [14]

    Chen Y T, Szurek M, Hu B L, Hond J D, Braverman B, Vuletic V 2022 Opt. Express 30 37426

    [15]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901Google Scholar

    [16]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604

    [17]

    Yang P F, Li M, Han X, He H, Li G, Zou C L, Zhang P F, Zhang T C 2019 arXiv 1911.10300

    [18]

    Chen W L, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [19]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [20]

    Haas F, Volz J, Gehr R, Reichel J, Estève J 2014 Science 344 180Google Scholar

    [21]

    Albrecht R, Bommer A, Deutsch C, Reichel J, Becher C 2013 Phys. Rev. Lett. 110 243602Google Scholar

    [22]

    Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602Google Scholar

    [23]

    Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6Google Scholar

    [24]

    Kiraz A, Michler P, Becher C, Gayral B, Imamoğlu A, Zhang L D, Hu E 2001 Appl. Phys. Lett. 78 3932Google Scholar

    [25]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [26]

    Metcalf H J, Van der Straten P 2003 J. Opt. Soc. Am. B: Opt. Phys. 20 887Google Scholar

    [27]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987Google Scholar

    [28]

    Münstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63Google Scholar

    [29]

    Fortier K M, Kim S Y, Gibbons M J, Ahmadi P, Chapman M S 2007 Phys. Rev. Lett. 98 233601Google Scholar

    [30]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. Lett. 91 213002Google Scholar

    [31]

    Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. Chin. 4 190Google Scholar

    [32]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [33]

    Wang X, Song L J, Wang C X, Zhang P F, Li G, Zhang T C 2019 Chin. Phys. B 28 073701

    [34]

    Nayak K P, Sadgrove M, Yalla R, Kien F L, Hakuta K 2018 J. Opt. 20 073001Google Scholar

    [35]

    Vetsch E, Reitz D, Sague’ G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

    [36]

    Davanco M I, Srinivasan K A 2009 Opt. Express 17 10542Google Scholar

    [37]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [38]

    Zhang P F, Wang X, Song L J, Wang C X, Li G, Zhang T C 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1401Google Scholar

    [39]

    Kien F L, Gupta S D, Balykin V I, Hakuta K 2005 Phys. Rev. A 72 032509Google Scholar

    [40]

    Fenton E F, Khan A, Solano P, Orozco L A, Fatemi F K 2018 Opt. Lett. 43 1534Google Scholar

    [41]

    Wuttke C, Cole G D, Rauschenbeutel A 2013 Phys. Rev. A 88 061801Google Scholar

    [42]

    Fogliano F, Besga B, Reigue A, Heringlake P, Lépinay M de L, Vaneph C, Reichel J, Pigeau B, Arcizet O 2021 Phys. Rev. X 11 021009

    [43]

    Pennetta R, Xie S, Russel P S 2016 Phys. Rev. Lett. 117 273901Google Scholar

    [44]

    Bernd W, Thorsten O, Sebastian S, Thomas H, Arno R 2021 Phys. Rev. Appl. 16 064021Google Scholar

    [45]

    Sakai H, Honda Y, Sasao N, Araki S, Higashi Y, Okugi T, Taniguchi T, Urakawa J, Takano M 2002 Jpn. J. Appl. Phys. 41 6398Google Scholar

    [46]

    You Y, Urakawa J J, Rawankar A, Aryshev A, Shimizu H, Honda Y, Yan L X, Huang W H, Tang C X 2012 Nucl. Instrum. Methods. Phys. Res. Sect. A 694 6Google Scholar

    [47]

    Sakaue K, Washio M, Araki S, Fukuda M, Higashi Y, Honda Y, Omori T, Taniguchi T, Terunuma N, Urakawa J, Sasao N 2009 Rev. Sci. Instrum. 80 123304Google Scholar

    [48]

    Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G, Zhang T C 2018 Opt. Express 26 31500Google Scholar

  • 图 1  (a) 理论模型结构示意图, 灰色阴影表示高斯光束, 红色阴影表示高斯光束在径向光功率密度分布, 蓝色长棒表示纳米光纤; (b) 光学F-P谐振腔的精细度随纳米光纤在y轴位置的变化关系的模拟结果, 红色三角块为纳米光纤造成光学F-P谐振腔的内腔损耗, 蓝色实线为光学F-P谐振腔腔内高斯光束的强度分布, 橙色圆点为光学F-P谐振腔精细度

    Figure 1.  (a) Schematic of the model for numerical simulations. Gray shaded areas represent the Gaussian beams, red shaded areas represent the intensity distribution of Gaussian beams and long blue bars represent the nanofiber. (b) F-P cavity finesse as a function of the nanofiber position along y-axis. The orange circles are the finesse of F-P cavity. The red triangular blocks are the F-P cavity losses and the blue solid line is the intensity distribution of the Gaussian beam in the F-P cavity.

    图 2  (a) 实验装置示意图; (b) 纳米光纤的电镜照片

    Figure 2.  (a) Schematic of experimental setup; (b) SEM image of the nanofiber.

    图 3  光学F-P谐振腔的精细度随纳米光纤在y轴位置的变化关系

    Figure 3.  Finesse of the F-P cavity as a function of nanofiber position along y-axis.

    图 5  光学F-P谐振腔中轴向(z轴)的腔内模场分布

    Figure 5.  Mode distribution in the F-P cavity along z-axis.

    图 4  纳米光纤处于光学F-P谐振腔腔模腰斑处, 光学F-P谐振腔内腔损耗随纳米光纤在y轴位置的变化关系

    Figure 4.  F-P cavity loss as a function of the position of the nanofiber in the y-axis when the nanofiber is at the waist of the cavity.

    Baidu
  • [1]

    张智明 2015 量子光学 (北京: 科学出版社) 第184—193页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp184–193 (in Chinese)

    [2]

    李刚, 张鹏飞, 杨鹏飞, 王志辉, 张天才 2022 光学学报 42 76

    Li G, Zhang P F, Yang P F, Wang Z H, Zhang T C 2022 Acta Opt. Sin. 42 76

    [3]

    Walther H, Varcoe B T H, Englert B-G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [4]

    张天才, 毋伟, 杨鹏飞, 李刚, 张鹏飞 2021 光学学报 41 392

    Zhang T C, Wu W, Yang P F, Li G, Zhang P F 2021 Acta Opt. Sin. 41 392

    [5]

    Vahala K J 2003 Nature 424 839Google Scholar

    [6]

    宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才 2019 68 074204Google Scholar

    Song L J, Zhang P F, Wang X, Wang C X, Li G, Zhang T C 2019 Acta Phys. Sin. 68 074204Google Scholar

    [7]

    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A 1992 Appl. Phys. Lett. 60 289Google Scholar

    [8]

    Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar

    [9]

    Ruddell S K, Webb K E, Herrera I, Parkins A S, Hoogerland M D 2017 Optica 4 576Google Scholar

    [10]

    Hunger D, Steinmetz T, Colombe Y, Deutsch C, Hänsch T W, Reichel J 2010 New J. Phys. 12 065038Google Scholar

    [11]

    Zhang Q Q, Fan Z Y, Zhang J P, Zhang F B, Zhang Q, Li Y M 2020 Appl. Opt. 59 8959Google Scholar

    [12]

    成凡, 张鹏飞, 王鑫, 张天才 2017 量子光学学报 23 74

    Cheng F, Zhang P F, Wang X, Zhang T C 2017 J. Quantum Opt. 23 74

    [13]

    Vučković J, Lončar M, Mabuchi H, Scherer A 2001 Phys. Rev. E 65 016608Google Scholar

    [14]

    Chen Y T, Szurek M, Hu B L, Hond J D, Braverman B, Vuletic V 2022 Opt. Express 30 37426

    [15]

    Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901Google Scholar

    [16]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604

    [17]

    Yang P F, Li M, Han X, He H, Li G, Zou C L, Zhang P F, Zhang T C 2019 arXiv 1911.10300

    [18]

    Chen W L, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [19]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272Google Scholar

    [20]

    Haas F, Volz J, Gehr R, Reichel J, Estève J 2014 Science 344 180Google Scholar

    [21]

    Albrecht R, Bommer A, Deutsch C, Reichel J, Becher C 2013 Phys. Rev. Lett. 110 243602Google Scholar

    [22]

    Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602Google Scholar

    [23]

    Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6Google Scholar

    [24]

    Kiraz A, Michler P, Becher C, Gayral B, Imamoğlu A, Zhang L D, Hu E 2001 Appl. Phys. Lett. 78 3932Google Scholar

    [25]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [26]

    Metcalf H J, Van der Straten P 2003 J. Opt. Soc. Am. B: Opt. Phys. 20 887Google Scholar

    [27]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987Google Scholar

    [28]

    Münstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63Google Scholar

    [29]

    Fortier K M, Kim S Y, Gibbons M J, Ahmadi P, Chapman M S 2007 Phys. Rev. Lett. 98 233601Google Scholar

    [30]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. Lett. 91 213002Google Scholar

    [31]

    Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. Chin. 4 190Google Scholar

    [32]

    Zhu J G, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photonics 4 46Google Scholar

    [33]

    Wang X, Song L J, Wang C X, Zhang P F, Li G, Zhang T C 2019 Chin. Phys. B 28 073701

    [34]

    Nayak K P, Sadgrove M, Yalla R, Kien F L, Hakuta K 2018 J. Opt. 20 073001Google Scholar

    [35]

    Vetsch E, Reitz D, Sague’ G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

    [36]

    Davanco M I, Srinivasan K A 2009 Opt. Express 17 10542Google Scholar

    [37]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [38]

    Zhang P F, Wang X, Song L J, Wang C X, Li G, Zhang T C 2020 J. Opt. Soc. Am. B: Opt. Phys. 37 1401Google Scholar

    [39]

    Kien F L, Gupta S D, Balykin V I, Hakuta K 2005 Phys. Rev. A 72 032509Google Scholar

    [40]

    Fenton E F, Khan A, Solano P, Orozco L A, Fatemi F K 2018 Opt. Lett. 43 1534Google Scholar

    [41]

    Wuttke C, Cole G D, Rauschenbeutel A 2013 Phys. Rev. A 88 061801Google Scholar

    [42]

    Fogliano F, Besga B, Reigue A, Heringlake P, Lépinay M de L, Vaneph C, Reichel J, Pigeau B, Arcizet O 2021 Phys. Rev. X 11 021009

    [43]

    Pennetta R, Xie S, Russel P S 2016 Phys. Rev. Lett. 117 273901Google Scholar

    [44]

    Bernd W, Thorsten O, Sebastian S, Thomas H, Arno R 2021 Phys. Rev. Appl. 16 064021Google Scholar

    [45]

    Sakai H, Honda Y, Sasao N, Araki S, Higashi Y, Okugi T, Taniguchi T, Urakawa J, Takano M 2002 Jpn. J. Appl. Phys. 41 6398Google Scholar

    [46]

    You Y, Urakawa J J, Rawankar A, Aryshev A, Shimizu H, Honda Y, Yan L X, Huang W H, Tang C X 2012 Nucl. Instrum. Methods. Phys. Res. Sect. A 694 6Google Scholar

    [47]

    Sakaue K, Washio M, Araki S, Fukuda M, Higashi Y, Honda Y, Omori T, Taniguchi T, Terunuma N, Urakawa J, Sasao N 2009 Rev. Sci. Instrum. 80 123304Google Scholar

    [48]

    Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G, Zhang T C 2018 Opt. Express 26 31500Google Scholar

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Zeng Ying, She Yan-Chao, Zhang Wei-Xi, Yang Hong. Storage and retrieval of optical solitons in nanofiber-semiconductor quantum dot molecule coupling systems. Acta Physica Sinica, 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [3] Fan Wen-Xin, Wang Min-Jie, Jiao Hao-Le, Lu Jia-Jin, Liu Hai-Long, Yang Zhi-Fang, Xi Meng-Qi, Li Shu-Jing, Wang Hai. Dependence of retrieval efficiency on waist ratio of read beam to anti-Stokes photon mode in cavity-enhanced quantum memory. Acta Physica Sinica, 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [4] Yan Wei-Zhi, Fan Qing, Yang Peng-Fei, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Trapping of single atom and precise control of its coupling strength in micro-optical cavity. Acta Physica Sinica, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [5] Zheng Yun-Jie, Wang Chen-Yang, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Input-output characteristics of single-mode cavity with multiple coherently coupled artificial atoms. Acta Physica Sinica, 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [6] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [7] Zhou Ying, Xie Shuang-Yuan, Xu Jing-Ping. Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system. Acta Physica Sinica, 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [8] Duan Xue-Ke, Ren Juan-Juan, Hao He, Zhang Qi, Gong Qi-Huang, Gu Ying. Interactions between photons and excitons in micro-nano photonic structures. Acta Physica Sinica, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [9] Xu Xiao-Hu, Chen Yong-Qiang, Guo Zhi-Wei, Sun Yong, Miao Xiang-Yang. Normal-mode splitting induced by homogeneous electromagnetic fields in cavities filled with effective zero-index metamaterials. Acta Physica Sinica, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [10] Zhao Yan-Hui, Qian Chen-Jiang, Tang Jing, Sun Yue, Peng Kai, Xu Xiu-Lai. Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity. Acta Physica Sinica, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [11] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [12] Li Ying, Hu Yan-Jun. Laser wavelength influence on capture and delivery of polystyrene microspheres using nanofibers. Acta Physica Sinica, 2014, 63(4): 048703. doi: 10.7498/aps.63.048703
    [13] Wen Rui-Juan, Du Jin-Jin, Li Wen-Fang, Li Gang, Zhang Tian-Cai. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms. Acta Physica Sinica, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [14] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [15] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [16] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [17] Li Lin-Li, Feng Guo-Ying, Yang Hao, Zhou Guo-Rui, Zhou Hao, Zhu Qi-Hua, Wang Jian-Jun, Zhou Shou-Huan. Dispersion properties and supercontinuum generation in nanofiber. Acta Physica Sinica, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [18] Lai Zhen-Jiang, Yang Zhi-Yong, Bai Jin-Tao, Sun Zhong-Yu. Entanglement swapping in the process of two-level atoms interacting with cavity fields of coherent states*. Acta Physica Sinica, 2004, 53(11): 3733-3738. doi: 10.7498/aps.53.3733
    [19] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] CHEN KAI-XIN, YI MAO-BIN, ZHANG DA-MING, HOU A-LIN. LONGITUDINAL ELECTRO-OPTIC MODULATION USING POLED POLYMER FILMS IN A FABRY-PEROT CAVITY. Acta Physica Sinica, 2000, 49(8): 1611-1613. doi: 10.7498/aps.49.1611
Metrics
  • Abstract views:  5408
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2022
  • Accepted Date:  24 August 2022
  • Available Online:  28 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回
Baidu
map