-
The strong localized field in micro-nano photonic structures brings new opportunities for the study of the light-matter interaction. By designing optical modes in these structures, photons and excitons in micro-nanostructures can exchange energy reversibly or irreversibly. In this paper, a series of our recent studies on the strong and weak photon-emitter coupling in micro-nano structures especially in plasmonic and their coupled structures are reviewed, such as the principle of efficient, tunable and directional single photon emission, and engineering the electromagnetic vacuum for enhancing the coupling between photon and exciton. These results provide new physical contents for the light-matter interactions on micro and nanoscale, and have potential applications in the on-chip quantum information process and the construction of scalable quantum networks.
-
Keywords:
- plasmonics /
- cavity quantum electrodynamics /
- strong coupling /
- weak coupling
[1] Nie S M, Emory S R, Chu S 1997 Science 275 1102
Google Scholar
[2] Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357
Google Scholar
[3] Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[4] Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
Google Scholar
[5] Kauranen M, Zayats A V 2012 Nat. Photon. 6 737
Google Scholar
[6] Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80
Google Scholar
[7] Vahala K J 2003 Nature 424 839
Google Scholar
[8] Jacob Z, Shalaev V M 2011 Science 334 463
Google Scholar
[9] Benson O 2011 Nature 480 193
Google Scholar
[10] Haroche S, Kleppner D 1989 Phys. Today 42 24
[11] Walther H 1992 Phys. Rep. 219 263
Google Scholar
[12] Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)
[13] Mabuchi H, Doherty A C 2002 Science 298 1372
Google Scholar
[14] Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)
[15] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551
Google Scholar
[16] Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81
Google Scholar
[17] Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325
Google Scholar
[18] Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379
Google Scholar
[19] Jaynes E T, Cummings F 1963 Proc. IEEE 51 89
Google Scholar
[20] Purcell E M 1946 Phys. Rev. 69 681
[21] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282
Google Scholar
[22] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002
Google Scholar
[23] Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
Google Scholar
[24] Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404
Google Scholar
[25] Herrera F, Spano F C 2018 ACS Photonics 5 65
Google Scholar
[26] 张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页
Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)
[27] 任娟娟 2018 博士学位论文 (北京: 北京大学)
Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)
[28] Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903
Google Scholar
[29] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654
Google Scholar
[30] Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401
Google Scholar
[31] Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812
Google Scholar
[32] Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601
Google Scholar
[33] Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602
Google Scholar
[34] Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174
Google Scholar
[35] Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245
Google Scholar
[36] Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431
Google Scholar
[37] Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111
Google Scholar
[38] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402
Google Scholar
[39] Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002
Google Scholar
[40] Pelton M 2015 Nat. Photon. 9 427
Google Scholar
[41] Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002
Google Scholar
[42] Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245
Google Scholar
[43] Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002
Google Scholar
[44] Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459
Google Scholar
[45] Lévéque G, Martin O J F 2006 Opt. Express 14 9971
Google Scholar
[46] Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807
Google Scholar
[47] Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879
Google Scholar
[48] Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488
Google Scholar
[49] Moskovits M 1985 Rev. Mod. Phys. 57 783
Google Scholar
[50] Novotny L, van Hulst N 2011 Nat. Photon. 5 83
Google Scholar
[51] Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181
Google Scholar
[52] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200
Google Scholar
[53] Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197
Google Scholar
[54] Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401
Google Scholar
[55] Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557
Google Scholar
[56] Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075
Google Scholar
[57] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671
Google Scholar
[58] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062
Google Scholar
[59] Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601
Google Scholar
[60] Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801
Google Scholar
[61] Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281
Google Scholar
[62] Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401
Google Scholar
[63] Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329
Google Scholar
[64] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127
Google Scholar
[65] Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401
Google Scholar
[66] Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358
Google Scholar
[67] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882
Google Scholar
[68] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
Google Scholar
[69] Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433
Google Scholar
[70] Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244
Google Scholar
[71] Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203
Google Scholar
[72] Ruppin R 1982 J. Chem. Phys. 76 1681
Google Scholar
[73] Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401
Google Scholar
[74] Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441
Google Scholar
[75] Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502
Google Scholar
[76] Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802
Google Scholar
[77] Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001
Google Scholar
[78] Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835
Google Scholar
[79] Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115
Google Scholar
[80] Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393
Google Scholar
[81] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930
Google Scholar
[82] Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369
Google Scholar
[83] Waks E, Sridharan D 2010 Phys. Rev. A 82 043845
Google Scholar
[84] Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131
Google Scholar
[85] Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816
Google Scholar
[86] Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303
Google Scholar
[87] Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603
Google Scholar
[88] Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604
[89] Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475
Google Scholar
[90] Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000
[91] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925
Google Scholar
[92] Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817
Google Scholar
[93] Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453
Google Scholar
[94] Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7
[95] Yu N F, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
[96] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473
Google Scholar
-
图 1 (a)腔量子电动力学体系, κ为腔模的损耗, γ为量子体系的自发辐射速率[9], g代表它们的耦合强度; (b)弱耦合(红线)和强耦合(蓝线)情况下的能量交换及透射谱[9]; (c)弱耦合下的自发辐射增强示意图[7]; (d)强耦合下的周期性能量交换示意图[7]
Fig. 1. (a) The cavity quantum electrodynamics system, κ is the damping rate of the cavity, γ is the spontaneous emission rate of the quantum system, and g is the coupling constant between the quantum system and the cavity mode[9]; (b) the progress of the energy exchange and the transmission spectrum of the cavity for the weak coupling (red) and strong coupling (blue) regimes[9]; (c) the enhancement of spontaneous emission for the weak coupling regime[7]; (d) the periodic energy exchange for the strong coupling regime[7].
图 2 (a)复合银纳米棒-金纳米薄膜间隙表面等离激元结构, 模式匹配的低损耗介质纳米光纤放置在薄膜上方; (b)量子发射体在间隙结构中沿不同衰减通道的自发辐射归一化衰减速率[43]
Fig. 2. (a) The coupled Ag nanorod-Au nanofilm gap plasmon system, with a phase-matched low loss dielectric nanofiber above the nanofilm; (b) the normalized decay rates of the quantum emitter in the gap structure into different decay channels[43].
图 3 (a)可调谐间隙表面等离激元结构; (b)高对比度自发辐射开关, 随着折射率的变化, 自发辐射速率可以实行从
$103\gamma_{0}$ 到$8750\gamma_{0}$ 的变化; (c)高收集效率模拟图, 光子能量有42%被有效收集到光纤中[70]Fig. 3. (a) The hybrid tunable gap surface plasmon nanostructure; (b) the high-contrast switching of spontaneous emission, with the change of index, the spontaneous emission rate can be tuned from
$103\gamma_{0}$ to$8750\gamma_{0}$ ; (c) the diagram of high-efficiency extracting, with 42% of the photons can be collected into the nanofibers[70]. -
[1] Nie S M, Emory S R, Chu S 1997 Science 275 1102
Google Scholar
[2] Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357
Google Scholar
[3] Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357
Google Scholar
[4] Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318
Google Scholar
[5] Kauranen M, Zayats A V 2012 Nat. Photon. 6 737
Google Scholar
[6] Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80
Google Scholar
[7] Vahala K J 2003 Nature 424 839
Google Scholar
[8] Jacob Z, Shalaev V M 2011 Science 334 463
Google Scholar
[9] Benson O 2011 Nature 480 193
Google Scholar
[10] Haroche S, Kleppner D 1989 Phys. Today 42 24
[11] Walther H 1992 Phys. Rep. 219 263
Google Scholar
[12] Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)
[13] Mabuchi H, Doherty A C 2002 Science 298 1372
Google Scholar
[14] Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)
[15] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551
Google Scholar
[16] Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81
Google Scholar
[17] Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325
Google Scholar
[18] Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379
Google Scholar
[19] Jaynes E T, Cummings F 1963 Proc. IEEE 51 89
Google Scholar
[20] Purcell E M 1946 Phys. Rev. 69 681
[21] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282
Google Scholar
[22] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002
Google Scholar
[23] Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
Google Scholar
[24] Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404
Google Scholar
[25] Herrera F, Spano F C 2018 ACS Photonics 5 65
Google Scholar
[26] 张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页
Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)
[27] 任娟娟 2018 博士学位论文 (北京: 北京大学)
Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)
[28] Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903
Google Scholar
[29] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654
Google Scholar
[30] Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401
Google Scholar
[31] Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812
Google Scholar
[32] Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601
Google Scholar
[33] Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602
Google Scholar
[34] Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174
Google Scholar
[35] Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245
Google Scholar
[36] Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431
Google Scholar
[37] Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111
Google Scholar
[38] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402
Google Scholar
[39] Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002
Google Scholar
[40] Pelton M 2015 Nat. Photon. 9 427
Google Scholar
[41] Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002
Google Scholar
[42] Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245
Google Scholar
[43] Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002
Google Scholar
[44] Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459
Google Scholar
[45] Lévéque G, Martin O J F 2006 Opt. Express 14 9971
Google Scholar
[46] Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807
Google Scholar
[47] Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879
Google Scholar
[48] Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488
Google Scholar
[49] Moskovits M 1985 Rev. Mod. Phys. 57 783
Google Scholar
[50] Novotny L, van Hulst N 2011 Nat. Photon. 5 83
Google Scholar
[51] Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181
Google Scholar
[52] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200
Google Scholar
[53] Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197
Google Scholar
[54] Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401
Google Scholar
[55] Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557
Google Scholar
[56] Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075
Google Scholar
[57] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671
Google Scholar
[58] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062
Google Scholar
[59] Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601
Google Scholar
[60] Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801
Google Scholar
[61] Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281
Google Scholar
[62] Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401
Google Scholar
[63] Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329
Google Scholar
[64] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127
Google Scholar
[65] Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401
Google Scholar
[66] Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358
Google Scholar
[67] Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882
Google Scholar
[68] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
Google Scholar
[69] Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433
Google Scholar
[70] Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244
Google Scholar
[71] Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203
Google Scholar
[72] Ruppin R 1982 J. Chem. Phys. 76 1681
Google Scholar
[73] Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401
Google Scholar
[74] Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441
Google Scholar
[75] Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502
Google Scholar
[76] Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802
Google Scholar
[77] Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001
Google Scholar
[78] Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835
Google Scholar
[79] Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115
Google Scholar
[80] Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393
Google Scholar
[81] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930
Google Scholar
[82] Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369
Google Scholar
[83] Waks E, Sridharan D 2010 Phys. Rev. A 82 043845
Google Scholar
[84] Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131
Google Scholar
[85] Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816
Google Scholar
[86] Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303
Google Scholar
[87] Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603
Google Scholar
[88] Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604
[89] Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475
Google Scholar
[90] Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000
[91] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925
Google Scholar
[92] Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817
Google Scholar
[93] Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453
Google Scholar
[94] Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7
[95] Yu N F, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
[96] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473
Google Scholar
计量
- 文章访问数: 16945
- PDF下载量: 798
- 被引次数: 0