Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy transfer in photosynthesis mediated by resonant confinement of exciton-polariton

Yang Xu-Yun Chen Yong-Cong Lu Wen-Bin Zhu Xiao-Mei Ao Ping

Citation:

Energy transfer in photosynthesis mediated by resonant confinement of exciton-polariton

Yang Xu-Yun, Chen Yong-Cong, Lu Wen-Bin, Zhu Xiao-Mei, Ao Ping
PDF
HTML
Get Citation
  • The ultra efficiency of energy transfer in photosynthesis has important biological significance. The underlying mechanism of energy transfer has never stopped being explored. Possible roles of quantum mechanics behind the natural phenomenon lead to many explorations in the field. Yet conventional mechanisms based on Förster resonance energy transfer or localized quantum coherence effects face certain challenges in explaining the unusual efficiency. We hereby bring up the attention of the dual properties of wave and particle of quantum mechanics into this context. In a previous research, we attributed the success of a similar efficiency in an artificial photosynthesis experiment to a mechanism mediated by resonant confinement of exciton-polariton. This paper extends the work to biological photosynthesis in higher plants and green sulfur bacteria. We explore specifically whether the exciton-polaritons of light-harvesting pigments, constrained by the optical cavity resonance, can act as intermediate states to mediate energy transfer. Namely, the pigments give a full play to their dual roles, receiving sunlight in the form of particle-like excitons, and rapidly transferring them to the reaction centers in the form of wave-like polaritons for maximal energy utilization. Taking realistic structure and data into account and based on approximate theoretical models, our quantitative estimate shows that such a mechanism is indeed capable of explaining at least partly the efficiency of photosynthesis. With comprehensive discussion, many deficits in the theoretical modeling can be reasonably reduced. Thus the conclusion may be further strengthened by realistic situations. Meanwhile, the underlying approach may also be extended to e.g. photovoltaic applications and neural signal transmissions, offering similar mechanisms for other energy transfer processes.
      Corresponding author: Chen Yong-Cong, chenyongcong@shu.edu.cn ; Ao Ping, aoping@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007).
    [1]

    林荣呈, 杨文强, 王柏臣, 于龙江, 王文达, 田利金, 迟伟, 卢庆陶, 韩广业, 匡廷云 2021 中国科学: 生命科学 51 1376Google Scholar

    Lin R C, Yang W Q, Wang B C, Yu L J, Wang W D, Tian L J, Chi W, Lu Q T, Hang G Y, Kuang T Y 2021 Sci. China Life. Sci. 51 1376Google Scholar

    [2]

    Mirkovic T, Ostroumov E E, Anna J M, van Grondelle R, Govindjee, Scholes G D 2016 Chem. Rev. 117 249Google Scholar

    [3]

    Chen Y C, Song B, Leggett A J, Ao P, Zhu X M 2019 Phys. Rev. Lett. 122 257402Google Scholar

    [4]

    Fassioli F, Dinshaw R, Arpin P C, Scholes G D 2014 J. R. Soc. Interface 11 20130901Google Scholar

    [5]

    Christensson N, Kauffmann H F, Pullerits T, Mančal T 2012 J. Phys. Chem. B 116 7449Google Scholar

    [6]

    Reimers J R, Biczysko M, Bruce D, et al. 2016 BBA-Biomembranes 1857 1627Google Scholar

    [7]

    Huang K 1951 Nature 167 779Google Scholar

    [8]

    Pines D, Bohm D 1952 Phys. Rev. 85 338565Google Scholar

    [9]

    Coles D, Flatten L C, Sydney T, Hounslow E, Saikin S K, Aspuru-Guzik A, Vedral V, Tang J K-H, Taylor R A, Smith J M, Lidzey D G 2017 Small 13 1701777Google Scholar

    [10]

    Coles D M, Yang Y S, Wang Y Y, Grant R T, Taylor R A, Saikin S K, Aspuru-Guzik A, Lidzey D G, Tang J K H, Smith J M 2014 Nat. Commun. 5 5561Google Scholar

    [11]

    Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y 2002 Science 298 199Google Scholar

    [12]

    Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409Google Scholar

    [13]

    Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis K S, Dominici L, De Giorgi M, Maier S A, Gigli G, Kéna-Cohen S, Sanvitto D 2017 Nat. Phys. 13 837Google Scholar

    [14]

    Chen P Z, Weng Y X, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z 2016 Angew. Chem. Int. Edit. 55 2759Google Scholar

    [15]

    Strümpfer J, Sener M, Schulten K 2012 J. Phys. Chem. Lett. 3 536Google Scholar

    [16]

    朱圣庚, 徐长法, 王镜岩, 张庭芳, 昌增益, 秦咏梅 2016 生物化学 (第四版)(北京: 高等教育出版社) 第175—196页

    Zhu S G, Xu C F, Wang J Y, Zhang T F, Chang Z Y, Qin Y M 2016 Biochemistry (Fourth edition) (Beijing: Higher Education Press) pp175–196 (in Chinese)

    [17]

    Staehelin L A 2003 Photosynth. Res. 76 185Google Scholar

    [18]

    Murray J W, Duncan J, Barber J 2006 Trends Plant Sci. 11 152Google Scholar

    [19]

    Overmann J 2001 Archaea and the Deeply Branching and Phototrophic Bacteria (Berlin: Springer) p601

    [20]

    Wahlund T M, Woese C R, Castenholz R W, Madigan M T 1991 Arch. Microbiol 156 81Google Scholar

    [21]

    Oostergetel G T, van Amerongen H, Boekema E J 2010 Photosynth. Res. 104 245Google Scholar

    [22]

    Krasnok A E, Slobozhanyuk A P, Simovski C R, Tretyakov S A, Poddubny A N, Miroshnichenko A E, Kivshar Y S, Belov P A 2015 Sci. Rep. UK. 5 1Google Scholar

    [23]

    Mustárdy L, Buttle K, Steinbach G, Garab G 2008 The Plant Cell 20 2552Google Scholar

    [24]

    Kirchhoff H, Tremmel I, Haase W, Kubitscheck U 2004 Biochemistry-US 43 9204Google Scholar

    [25]

    Oviedo M B, Sanchez C G 2011 J. Phys. Chem. A 115 12280Google Scholar

    [26]

    Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R, May V 2004 J. Phys. Chem. B 108 13536Google Scholar

    [27]

    Kühlbrandt W, Wang D N 1991 Nature 350 130Google Scholar

    [28]

    Hankamer B, Barber J, Boekema E J 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 641Google Scholar

    [29]

    Nield J, Orlova E V, Morris E P, Gowen B, van Heel M, Barber J 2000 Nat. Struct. Biol. 7 44Google Scholar

    [30]

    Bassi R, Hyer-Hansen G, Barbato R, Giacometti G M, Simpson D J 1987 J. Biol. Chem. 262 13333Google Scholar

    [31]

    Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki L, Lin S, Knox R S, Wittmershaus B P, Brune D C, Blankenship R E 1989 J. Phys. Chem. 93 7503Google Scholar

    [32]

    Orf G S, Blankenship R E 2013 Photosynth. Res. 116 315Google Scholar

    [33]

    Günther L M, Jendrny M, Bloemsma E A, Tank M, Oostergetel G T, Bryant D A, Knoester J, Kohler J 2016 J. Phys. Chem. B 120 5367Google Scholar

    [34]

    Lavergne J 2006 BBA-Biomembranes 1757 1453Google Scholar

    [35]

    Sahoo P C, Pant D, Kumar M, Puri S K, Ramakumar S S V 2020 Trends. Biotechnol. 38 1245Google Scholar

    [36]

    Song B, Shu Y S 2020 Nano Res. 13 38Google Scholar

  • 图 1  高等植物体中叶绿体的示意图[16,17]

    Figure 1.  Illustrative structure of a chloroplast in higher plants[16,17].

    图 2  绿色硫细菌示意图[19,20]

    Figure 2.  Structures of a green sulfur bacterium[19,20].

    图 3  矩形光腔中激子极化子介导能量示意图

    Figure 3.  Processes of exciton-polariton mediated energy transfer in a rectangular optical cavity.

    图 4  当选定一组$ {k_x} $, $ {k_y} $模式时, 红色曲线表示极化子的归一化能量$ {E_{\boldsymbol{k}}}/{E_1} $$ {k_z}/{k_{\text{e}}} $的变化情况. 水平实线(顶边)和虚线分别表征$ {E_1} $$ {E_2} $, 竖直虚线右侧的部分表示全内反射所限制的模式 (a)${k_x} = {k_{\text{e}}}{, }\;{k_y} = {k_{\text{e}}}{, }\;{k_z} \geqslant 0.67{k_{\text{e}}};$ (b) ${k_x} ={1}/{2}{k_{\text{e}}}{, }\;{k_y} = {k_{\text{e}}},$ ${k_z} \geqslant 1.1{k_{\text{e}}}$

    Figure 4.  The solid (red) curve shows the dependence of normalized energy $ {E_{\boldsymbol{k}}}/{E_1} $, on the quasi-continuous $ {k_z}/{k_{\text{e}}} $ for a selected set of $ {k_x} $, $ {k_y} $.The horizontal solid line (top frame-border) and the horizontal dashed line represents $ {E_1} $ and $ {E_2} $, the modes to the right of the vertical dash line are confined by total internal reflection: (a)${k_x} = {k_{\text{e}}}{, }~{k_y} = {k_{\text{e}}}{, }~{k_z} \geqslant 0.67{k_{\text{e}}}$; (b) ${k_x} = {1}/{2}{k_{\text{e}}}{, }\;{k_y} = $ $ {k_{\text{e}}}{, }\;{k_z} \geqslant 1.1{k_{\text{e}}} $.

    图 5  当选定一组$ {k_x} $, $ {k_y} $模式时, 红色曲线表示极化子的归一化能量$ {E_{\boldsymbol{k}}}/{E_1} $$ {k_z}/{k_{\text{e}}} $的变化情况. 水平实线(顶边)和虚线分别表征$ {E_1} $$ {E_2} $, 竖直虚线右侧的部分表示全内反射所限制的模式 (a) $ {k_x} = {k_{\text{e}}}{, }~{k_y} = {k_{\text{e}}}{, }{k_z} \geqslant 0.67{k_{\text{e}}} $; (b) ${k_x} = {1}/{2}{k_{\text{e}}}{, }~{k_y} = $ ${k_{\text{e}}}{, }~{k_z} \geqslant 1.1{k_{\text{e}}} $

    Figure 5.  The solid (red) curve shows the dependence of normalized energy $ {E_{\boldsymbol{k}}}/{E_1} $, on the quasi-continuous $ {k_z}/{k_{\text{e}}} $ for a selected set of $ {k_x} $, $ {k_y} $. The horizontal solid line (top frame-border) and the horizontal dashed line represents $ {E_1} $ and $ {E_2} $, the modes to the right of the vertical dash line are confined by total internal reflection: (a) $ {k_x} = {k_{\text{e}}}{, }~{k_y} = {k_{\text{e}}}{, }~{k_z} \geqslant 0.67{k_{\text{e}}} $; (b) ${k_x} = {1}/{2}{k_{\text{e}}}{, }~{k_y} = $ $ {k_{\text{e}}}{, }~{k_z} \geqslant 1.1{k_{\text{e}}} $.

    表 1  高等植物体的参数值

    Table 1.  Parameters of higher plants.

    光合场所: 基粒 主要集光色素: Chl a
    形状直径高度 吸收峰发射峰偶极矩能量值
    圆柱体500 nm250 nm 674 nm 683 nm4.58 deb14841 cm–1
    DownLoad: CSV

    表 2  绿色硫细菌的参数值

    Table 2.  Parameters of green sulfur bacteria.

    光合场所: 绿色硫细菌 主要集光色素: BChl c
    形状直径高度 吸收峰发射峰偶极矩能量值
    椭圆体600 nm1600 nm 740 nm750 nm5.19 deb13476 cm–1
    DownLoad: CSV
    Baidu
  • [1]

    林荣呈, 杨文强, 王柏臣, 于龙江, 王文达, 田利金, 迟伟, 卢庆陶, 韩广业, 匡廷云 2021 中国科学: 生命科学 51 1376Google Scholar

    Lin R C, Yang W Q, Wang B C, Yu L J, Wang W D, Tian L J, Chi W, Lu Q T, Hang G Y, Kuang T Y 2021 Sci. China Life. Sci. 51 1376Google Scholar

    [2]

    Mirkovic T, Ostroumov E E, Anna J M, van Grondelle R, Govindjee, Scholes G D 2016 Chem. Rev. 117 249Google Scholar

    [3]

    Chen Y C, Song B, Leggett A J, Ao P, Zhu X M 2019 Phys. Rev. Lett. 122 257402Google Scholar

    [4]

    Fassioli F, Dinshaw R, Arpin P C, Scholes G D 2014 J. R. Soc. Interface 11 20130901Google Scholar

    [5]

    Christensson N, Kauffmann H F, Pullerits T, Mančal T 2012 J. Phys. Chem. B 116 7449Google Scholar

    [6]

    Reimers J R, Biczysko M, Bruce D, et al. 2016 BBA-Biomembranes 1857 1627Google Scholar

    [7]

    Huang K 1951 Nature 167 779Google Scholar

    [8]

    Pines D, Bohm D 1952 Phys. Rev. 85 338565Google Scholar

    [9]

    Coles D, Flatten L C, Sydney T, Hounslow E, Saikin S K, Aspuru-Guzik A, Vedral V, Tang J K-H, Taylor R A, Smith J M, Lidzey D G 2017 Small 13 1701777Google Scholar

    [10]

    Coles D M, Yang Y S, Wang Y Y, Grant R T, Taylor R A, Saikin S K, Aspuru-Guzik A, Lidzey D G, Tang J K H, Smith J M 2014 Nat. Commun. 5 5561Google Scholar

    [11]

    Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y 2002 Science 298 199Google Scholar

    [12]

    Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409Google Scholar

    [13]

    Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis K S, Dominici L, De Giorgi M, Maier S A, Gigli G, Kéna-Cohen S, Sanvitto D 2017 Nat. Phys. 13 837Google Scholar

    [14]

    Chen P Z, Weng Y X, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z 2016 Angew. Chem. Int. Edit. 55 2759Google Scholar

    [15]

    Strümpfer J, Sener M, Schulten K 2012 J. Phys. Chem. Lett. 3 536Google Scholar

    [16]

    朱圣庚, 徐长法, 王镜岩, 张庭芳, 昌增益, 秦咏梅 2016 生物化学 (第四版)(北京: 高等教育出版社) 第175—196页

    Zhu S G, Xu C F, Wang J Y, Zhang T F, Chang Z Y, Qin Y M 2016 Biochemistry (Fourth edition) (Beijing: Higher Education Press) pp175–196 (in Chinese)

    [17]

    Staehelin L A 2003 Photosynth. Res. 76 185Google Scholar

    [18]

    Murray J W, Duncan J, Barber J 2006 Trends Plant Sci. 11 152Google Scholar

    [19]

    Overmann J 2001 Archaea and the Deeply Branching and Phototrophic Bacteria (Berlin: Springer) p601

    [20]

    Wahlund T M, Woese C R, Castenholz R W, Madigan M T 1991 Arch. Microbiol 156 81Google Scholar

    [21]

    Oostergetel G T, van Amerongen H, Boekema E J 2010 Photosynth. Res. 104 245Google Scholar

    [22]

    Krasnok A E, Slobozhanyuk A P, Simovski C R, Tretyakov S A, Poddubny A N, Miroshnichenko A E, Kivshar Y S, Belov P A 2015 Sci. Rep. UK. 5 1Google Scholar

    [23]

    Mustárdy L, Buttle K, Steinbach G, Garab G 2008 The Plant Cell 20 2552Google Scholar

    [24]

    Kirchhoff H, Tremmel I, Haase W, Kubitscheck U 2004 Biochemistry-US 43 9204Google Scholar

    [25]

    Oviedo M B, Sanchez C G 2011 J. Phys. Chem. A 115 12280Google Scholar

    [26]

    Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R, May V 2004 J. Phys. Chem. B 108 13536Google Scholar

    [27]

    Kühlbrandt W, Wang D N 1991 Nature 350 130Google Scholar

    [28]

    Hankamer B, Barber J, Boekema E J 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 641Google Scholar

    [29]

    Nield J, Orlova E V, Morris E P, Gowen B, van Heel M, Barber J 2000 Nat. Struct. Biol. 7 44Google Scholar

    [30]

    Bassi R, Hyer-Hansen G, Barbato R, Giacometti G M, Simpson D J 1987 J. Biol. Chem. 262 13333Google Scholar

    [31]

    Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki L, Lin S, Knox R S, Wittmershaus B P, Brune D C, Blankenship R E 1989 J. Phys. Chem. 93 7503Google Scholar

    [32]

    Orf G S, Blankenship R E 2013 Photosynth. Res. 116 315Google Scholar

    [33]

    Günther L M, Jendrny M, Bloemsma E A, Tank M, Oostergetel G T, Bryant D A, Knoester J, Kohler J 2016 J. Phys. Chem. B 120 5367Google Scholar

    [34]

    Lavergne J 2006 BBA-Biomembranes 1757 1453Google Scholar

    [35]

    Sahoo P C, Pant D, Kumar M, Puri S K, Ramakumar S S V 2020 Trends. Biotechnol. 38 1245Google Scholar

    [36]

    Song B, Shu Y S 2020 Nano Res. 13 38Google Scholar

  • [1] Wang Jin-Ling, Zhang Kun, Lin Ji, Li Hui-Jun. Generation and modulation of shock waves in two-dimensional polariton condensates. Acta Physica Sinica, 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] Zhang Xian-Jun. Development and application of cryogenic optical microscopy in photosynthesis research. Acta Physica Sinica, 2024, 73(22): 229201. doi: 10.7498/aps.73.20241072
    [3] Chen Hao, Tian Jian-Min, Sun Xue-Jian, Lü Ke-Zhen, Xu Li-Hua, Li Hong-Rong. Influence of the light excitation on energy transfer in a multi-pigments light-harvesting model of photosynthesis. Acta Physica Sinica, 2022, 71(10): 104203. doi: 10.7498/aps.71.20211960
    [4] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [5] Zou Shuang-Yang,  Muhammad Arshad,  Yang Gao-Ling,  Liu Rui-Bin,  Shi Li-Jie,  Zhang Yong-You,  Jia Bao-Hua,  Zhong Hai-Zheng,  Zou Bing-Suo. Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Acta Physica Sinica, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [6] Bai Xu-Fang, Wuyunqimuge, Xin Wei, Eerdunchaolu. Study of the properties of strong-coupling magnetopolaron in quantum disks induced by the Rashba spin-orbit interaction. Acta Physica Sinica, 2014, 63(17): 177803. doi: 10.7498/aps.63.177803
    [7] Li Hong-Yu, Zhang Qiang, Wang Chun-Ling, Yang Fu-Lin, Zhao Jian-Hua. The influences of air heat storage, plant photosynthesis and soil water movement on surface energy balance over the loess plateau. Acta Physica Sinica, 2012, 61(15): 159201. doi: 10.7498/aps.61.159201
    [8] Chen Hua, Du Lei, Zhuang Yi-Qi, Niu Wen-Juan. Relation between charge shot noise and spin polarization governed by Rashba spin orbit interaction. Acta Physica Sinica, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [9] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [10] Eerdunchaolu. Influences of temperature and polaron effect on the ground state of quasi-two-dimensional strong-coupling exciton. Acta Physica Sinica, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [11] Zhao Feng-Qi, Zhou Bing-Qing. Energy levels of a polaron in wurtzite nitride parabolic quantum well under external electric field. Acta Physica Sinica, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [12] Ren Xue-Zao, Liao Xu, Liu Tao, Wang Ke-Lin. The influence of the electron and one pair of phonons interaction on Holstein polaron. Acta Physica Sinica, 2006, 55(6): 2865-2870. doi: 10.7498/aps.55.2865
    [13] ZHANG CHUN, MA YUN-XHENG, XUN XIN, YE CHENG. ELECTRON INTERACTION AND THE POLARON IN POLYMERS. Acta Physica Sinica, 1999, 48(5): 917-925. doi: 10.7498/aps.48.917
    [14] FU ROU-LI, YE HONG-JUAN, LI LEI, FU RONG-TANG, MIAO JIAN, SUN XIN, ZHANG ZHI-LIN. POLARIZATION OF SELF-TRAPPED EXCITON IN POLYMERS UNDER THE ELECTRIC FIELD. Acta Physica Sinica, 1998, 47(1): 94-101. doi: 10.7498/aps.47.94
    [15] WANG KE-LIN, CHEN QING-HU, WAN SHAO-LONG. A NEW METHOD OF VARIATIONAL CALCULATION FOR POLARON. Acta Physica Sinica, 1994, 43(3): 433-437. doi: 10.7498/aps.43.433
    [16] HUANG QING-PENG, FU RONG-TANG, SUN XIN, FU ROU-LI. ELECTRON CORRELATION EFFECT ON C60 EXCITON POLARON. Acta Physica Sinica, 1994, 43(11): 1833-1839. doi: 10.7498/aps.43.1833
    [17] LI JING-DE, LU XIA-LIAN, LEI DE-MING. POLARONS IN HIGH INSULATORS. Acta Physica Sinica, 1992, 41(11): 1898-1905. doi: 10.7498/aps.41.1898
    [18] LIU JIE, FANG KE, SUN XIN. EFFECTS OF ELECTRON-ELECTRON INTERACTION ON THE ELECTRONIC STATES OF POLARON IN POLY ACETYLENE. Acta Physica Sinica, 1989, 38(1): 9-15. doi: 10.7498/aps.38.9
    [19] XING DING-YU, GONG CHANG-DE. POLARONS IN A 1:3 PEIERLS SYSTEM. Acta Physica Sinica, 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
    [20] PAN JIN-SHENG. THE SURFACE OR INTERFACE WEAK COUPLING POLARON IN POLAR CRYSTALS. Acta Physica Sinica, 1982, 31(3): 335-347. doi: 10.7498/aps.31.335
Metrics
  • Abstract views:  4508
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  15 July 2022
  • Accepted Date:  15 August 2022
  • Available Online:  29 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回
Baidu
map