Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interactions between photons and excitons in micro-nano photonic structures

Duan Xue-Ke Ren Juan-Juan Hao He Zhang Qi Gong Qi-Huang Gu Ying

Citation:

Interactions between photons and excitons in micro-nano photonic structures

Duan Xue-Ke, Ren Juan-Juan, Hao He, Zhang Qi, Gong Qi-Huang, Gu Ying
PDF
HTML
Get Citation
  • The strong localized field in micro-nano photonic structures brings new opportunities for the study of the light-matter interaction. By designing optical modes in these structures, photons and excitons in micro-nanostructures can exchange energy reversibly or irreversibly. In this paper, a series of our recent studies on the strong and weak photon-emitter coupling in micro-nano structures especially in plasmonic and their coupled structures are reviewed, such as the principle of efficient, tunable and directional single photon emission, and engineering the electromagnetic vacuum for enhancing the coupling between photon and exciton. These results provide new physical contents for the light-matter interactions on micro and nanoscale, and have potential applications in the on-chip quantum information process and the construction of scalable quantum networks.
      Corresponding author: Gu Ying, ygu@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1107200), the National Natural Science Foundation of China (Grant Nos. 11525414, 11734001), and the Key Research and Development Program of Guangdong Province, China (Grant No. 2018B030329001) .
    [1]

    Nie S M, Emory S R, Chu S 1997 Science 275 1102Google Scholar

    [2]

    Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357Google Scholar

    [3]

    Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [4]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [5]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737Google Scholar

    [6]

    Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839Google Scholar

    [8]

    Jacob Z, Shalaev V M 2011 Science 334 463Google Scholar

    [9]

    Benson O 2011 Nature 480 193Google Scholar

    [10]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [11]

    Walther H 1992 Phys. Rep. 219 263Google Scholar

    [12]

    Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)

    [13]

    Mabuchi H, Doherty A C 2002 Science 298 1372Google Scholar

    [14]

    Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)

    [15]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551Google Scholar

    [16]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81Google Scholar

    [17]

    Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [18]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [19]

    Jaynes E T, Cummings F 1963 Proc. IEEE 51 89Google Scholar

    [20]

    Purcell E M 1946 Phys. Rev. 69 681

    [21]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [24]

    Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404Google Scholar

    [25]

    Herrera F, Spano F C 2018 ACS Photonics 5 65Google Scholar

    [26]

    张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页

    Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)

    [27]

    任娟娟 2018 博士学位论文 (北京: 北京大学)

    Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [28]

    Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903Google Scholar

    [29]

    Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654Google Scholar

    [30]

    Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401Google Scholar

    [31]

    Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812Google Scholar

    [32]

    Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601Google Scholar

    [33]

    Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602Google Scholar

    [34]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174Google Scholar

    [35]

    Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245Google Scholar

    [36]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431Google Scholar

    [37]

    Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111Google Scholar

    [38]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402Google Scholar

    [39]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002Google Scholar

    [40]

    Pelton M 2015 Nat. Photon. 9 427Google Scholar

    [41]

    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002Google Scholar

    [42]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245Google Scholar

    [43]

    Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [44]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459Google Scholar

    [45]

    Lévéque G, Martin O J F 2006 Opt. Express 14 9971Google Scholar

    [46]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [47]

    Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879Google Scholar

    [48]

    Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488Google Scholar

    [49]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [50]

    Novotny L, van Hulst N 2011 Nat. Photon. 5 83Google Scholar

    [51]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181Google Scholar

    [52]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200Google Scholar

    [53]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [54]

    Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401Google Scholar

    [55]

    Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557Google Scholar

    [56]

    Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075Google Scholar

    [57]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671Google Scholar

    [58]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062Google Scholar

    [59]

    Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601Google Scholar

    [60]

    Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801Google Scholar

    [61]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [62]

    Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401Google Scholar

    [63]

    Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329Google Scholar

    [64]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [65]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [66]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358Google Scholar

    [67]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [68]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [69]

    Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433Google Scholar

    [70]

    Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244Google Scholar

    [71]

    Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203Google Scholar

    [72]

    Ruppin R 1982 J. Chem. Phys. 76 1681Google Scholar

    [73]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401Google Scholar

    [74]

    Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441Google Scholar

    [75]

    Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502Google Scholar

    [76]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802Google Scholar

    [77]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001Google Scholar

    [78]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835Google Scholar

    [79]

    Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115Google Scholar

    [80]

    Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393Google Scholar

    [81]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930Google Scholar

    [82]

    Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369Google Scholar

    [83]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845Google Scholar

    [84]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [85]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [86]

    Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303Google Scholar

    [87]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603Google Scholar

    [88]

    Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604

    [89]

    Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475Google Scholar

    [90]

    Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000

    [91]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [92]

    Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817Google Scholar

    [93]

    Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453Google Scholar

    [94]

    Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7

    [95]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [96]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

  • 图 1  (a)腔量子电动力学体系, κ为腔模的损耗, γ为量子体系的自发辐射速率[9], g代表它们的耦合强度; (b)弱耦合(红线)和强耦合(蓝线)情况下的能量交换及透射谱[9]; (c)弱耦合下的自发辐射增强示意图[7]; (d)强耦合下的周期性能量交换示意图[7]

    Figure 1.  (a) The cavity quantum electrodynamics system, κ is the damping rate of the cavity, γ is the spontaneous emission rate of the quantum system, and g is the coupling constant between the quantum system and the cavity mode[9]; (b) the progress of the energy exchange and the transmission spectrum of the cavity for the weak coupling (red) and strong coupling (blue) regimes[9]; (c) the enhancement of spontaneous emission for the weak coupling regime[7]; (d) the periodic energy exchange for the strong coupling regime[7].

    图 2  (a)复合银纳米棒-金纳米薄膜间隙表面等离激元结构, 模式匹配的低损耗介质纳米光纤放置在薄膜上方; (b)量子发射体在间隙结构中沿不同衰减通道的自发辐射归一化衰减速率[43]

    Figure 2.  (a) The coupled Ag nanorod-Au nanofilm gap plasmon system, with a phase-matched low loss dielectric nanofiber above the nanofilm; (b) the normalized decay rates of the quantum emitter in the gap structure into different decay channels[43].

    图 3  (a)可调谐间隙表面等离激元结构; (b)高对比度自发辐射开关, 随着折射率的变化, 自发辐射速率可以实行从$103\gamma_{0}$$8750\gamma_{0}$的变化; (c)高收集效率模拟图, 光子能量有42%被有效收集到光纤中[70]

    Figure 3.  (a) The hybrid tunable gap surface plasmon nanostructure; (b) the high-contrast switching of spontaneous emission, with the change of index, the spontaneous emission rate can be tuned from $103\gamma_{0}$ to $8750\gamma_{0}$; (c) the diagram of high-efficiency extracting, with 42% of the photons can be collected into the nanofibers[70].

    图 4  (a)纳米棒和纳米线的复合结构; (b)银纳米线和银纳米棒复合系统以及(c)介质纳米线和银纳米棒复合系统中的各个衰减通道的归一化衰减系数[71]

    Figure 4.  (a) The coupled nanorod-nanowire system. The normalized decay rates into different channels in the coupled (b) Ag nanowire-Ag nanorod system and (c) dielectric nanowire- Ag nanorod system[71].

    图 5  (a)倏逝真空中的表面等离激元纳米腔量子电动力学体系; (b)在倏逝真空下的耦合系数g的增强[88]

    Figure 5.  (a) The plasmonic nano-CQED system in evanescent-vacuum; (b) the enhancement of the coupling coefficient in evanescent-vacuum[88].

    图 6  (a)介质纳米圆环-纳米线复合结构; (b)纳米线存在时的耦合系数增强[90]

    Figure 6.  (a) The hybrid nanotoroid-nanowire system; (b) the enhancement of the coupling coefficient in the nanogap with the nanowire[90].

    Baidu
  • [1]

    Nie S M, Emory S R, Chu S 1997 Science 275 1102Google Scholar

    [2]

    Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357Google Scholar

    [3]

    Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [4]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [5]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737Google Scholar

    [6]

    Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839Google Scholar

    [8]

    Jacob Z, Shalaev V M 2011 Science 334 463Google Scholar

    [9]

    Benson O 2011 Nature 480 193Google Scholar

    [10]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [11]

    Walther H 1992 Phys. Rep. 219 263Google Scholar

    [12]

    Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)

    [13]

    Mabuchi H, Doherty A C 2002 Science 298 1372Google Scholar

    [14]

    Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)

    [15]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551Google Scholar

    [16]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81Google Scholar

    [17]

    Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [18]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [19]

    Jaynes E T, Cummings F 1963 Proc. IEEE 51 89Google Scholar

    [20]

    Purcell E M 1946 Phys. Rev. 69 681

    [21]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [24]

    Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404Google Scholar

    [25]

    Herrera F, Spano F C 2018 ACS Photonics 5 65Google Scholar

    [26]

    张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页

    Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)

    [27]

    任娟娟 2018 博士学位论文 (北京: 北京大学)

    Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [28]

    Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903Google Scholar

    [29]

    Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654Google Scholar

    [30]

    Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401Google Scholar

    [31]

    Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812Google Scholar

    [32]

    Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601Google Scholar

    [33]

    Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602Google Scholar

    [34]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174Google Scholar

    [35]

    Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245Google Scholar

    [36]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431Google Scholar

    [37]

    Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111Google Scholar

    [38]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402Google Scholar

    [39]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002Google Scholar

    [40]

    Pelton M 2015 Nat. Photon. 9 427Google Scholar

    [41]

    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002Google Scholar

    [42]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245Google Scholar

    [43]

    Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [44]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459Google Scholar

    [45]

    Lévéque G, Martin O J F 2006 Opt. Express 14 9971Google Scholar

    [46]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [47]

    Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879Google Scholar

    [48]

    Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488Google Scholar

    [49]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [50]

    Novotny L, van Hulst N 2011 Nat. Photon. 5 83Google Scholar

    [51]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181Google Scholar

    [52]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200Google Scholar

    [53]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [54]

    Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401Google Scholar

    [55]

    Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557Google Scholar

    [56]

    Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075Google Scholar

    [57]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671Google Scholar

    [58]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062Google Scholar

    [59]

    Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601Google Scholar

    [60]

    Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801Google Scholar

    [61]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [62]

    Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401Google Scholar

    [63]

    Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329Google Scholar

    [64]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [65]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [66]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358Google Scholar

    [67]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [68]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [69]

    Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433Google Scholar

    [70]

    Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244Google Scholar

    [71]

    Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203Google Scholar

    [72]

    Ruppin R 1982 J. Chem. Phys. 76 1681Google Scholar

    [73]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401Google Scholar

    [74]

    Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441Google Scholar

    [75]

    Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502Google Scholar

    [76]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802Google Scholar

    [77]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001Google Scholar

    [78]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835Google Scholar

    [79]

    Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115Google Scholar

    [80]

    Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393Google Scholar

    [81]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930Google Scholar

    [82]

    Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369Google Scholar

    [83]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845Google Scholar

    [84]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [85]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [86]

    Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303Google Scholar

    [87]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603Google Scholar

    [88]

    Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604

    [89]

    Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475Google Scholar

    [90]

    Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000

    [91]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [92]

    Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817Google Scholar

    [93]

    Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453Google Scholar

    [94]

    Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7

    [95]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [96]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

  • [1] Chen Zhao, Ma Xin-Xin, Li Tong, Wang Yi-Lin. Optical pressure sensor based on Fano resonance in a coupled resonator system. Acta Physica Sinica, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] Li Yuan-Fang, Jiang Yuan, Zhao Lei. Weak pulse signal detection method based on improved strongly coupled oscillators. Acta Physica Sinica, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [3] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [4] Yan Wei-Zhi, Fan Qing, Yang Peng-Fei, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Trapping of single atom and precise control of its coupling strength in micro-optical cavity. Acta Physica Sinica, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [5] Zheng Yun-Jie, Wang Chen-Yang, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Input-output characteristics of single-mode cavity with multiple coherently coupled artificial atoms. Acta Physica Sinica, 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [6] Zhao Shi-Hang, Zhang Yuan, Lü Si-Yuan, Cheng Shao-Bo, Zheng Chang-Lin, Wang Lu-Xia. Numerical simulation of strong coupling between silver nanorod and dielectric layer detected by electron energy loss spectrum. Acta Physica Sinica, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [7] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [8] Zhang Meng-Lai, Qin Zhao-Fu, Chen Zhuo. Conditions for surface lattice resonances and enhancement of second harmonic generation based on split-ring resonators. Acta Physica Sinica, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [9] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [10] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [11] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [13] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [14] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [15] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Xu Ying. Strong coupling between J-aggregates and surface plasmon polaritons in gold nanodisks arrays. Acta Physica Sinica, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [16] Wen Rui-Juan, Du Jin-Jin, Li Wen-Fang, Li Gang, Zhang Tian-Cai. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms. Acta Physica Sinica, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [17] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [18] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [19] Chen Xiang, Mi Xian-Wu. Characteristics of spontaneous emission from a two-level atom in a very high Q cavity. Acta Physica Sinica, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [20] Zhang Li-Ping, Wen Rong-Ji. Scaling approach to the conservation-law growth equations in anomalous surface roughening. Acta Physica Sinica, 2009, 58(8): 5186-5190. doi: 10.7498/aps.58.5186
Metrics
  • Abstract views:  15660
  • PDF Downloads:  775
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2019
  • Accepted Date:  11 April 2019
  • Available Online:  01 July 2019
  • Published Online:  20 July 2019

/

返回文章
返回
Baidu
map