-
腔内中性原子的长时间控制与俘获一直是腔量子电动力学(QED)中的一个难题, 极大地制约了人们相干操控单原子及其与光相互作用的研究. 本文基于传统Fabry-Perot光学腔, 设计了一套易于内腔原子操控的强耦合腔QED系统, 其典型参数为: 腔长3.5 mm精细度约为57000, (g0,,)=2 (1.48, 0.375, 2.61) MHz, 临界光子数和原子数分别为1.54和0.89. 该系统的特点是: 能够在腔内直接实现冷原子磁光阱, 并建立腔内光学晶格, 实现腔内可控数目的中性原子的长时间俘获. 通过合理选择构建光学偶极阱和原子成像系统, 可实现对腔内单个原子或原子阵列的操控、探测、成像等. 该系统可以克服传统腔QED系统中转移原子的困难, 大幅增加腔内原子的寿命, 为构建以腔QED系统为基础的量子信息演示平台提供了一种可能.The long-time trap and control of neutral atoms in an optical micro-cavity is a crucial problem in cavity quantum electrodynamics (QED), which greatly restricts the coherent manipulation of the interaction process between single atom and light. In this paper, we design a strongly coupled cavity QED system based on the traditional Fabry-Perot cavity. The parameters of the cavity are 3.5 millimeters in length, about 57000 in fineness, (g0,,)=2 (1.48, 0.375, 2.61) MHz, 1.54 and 0.89 in critical photon and atom number, respectively. The system allows building the magneto-optical trap (MOT) and optical lattice directly inside the cavity, which provides the possibility of long-time trapping deterministic single neutral atom or a number of neutral atoms in the cavity. By setting up a dipole trap and atomic imaging system, the capture, detection and imaging of single atom or several atoms in the cavity can be realized. The system overcomes some difficulties in transferring atoms in the usual cavity QED and has potential applications in robust intracavity atom control for quantum information processing.
[1] Rempe G, Thompson R J, Kimble H J, Lalezari R 1992 Opt. Lett. 17 363
[2] Li L P, Liu T, Li G, Zhang T C, Wang J M 2004 Acta Phys. Sin. 53 1401 (in Chinese) [李利平, 刘涛, 李刚, 张天才, 王军民 2004 53 1401]
[3] Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132
[4] Chu S 1998 Rev. Mod. Phys. 70 685
[5] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[6] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[7] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[8] Pinkse P W H, Fischer T, Munstermann P, Rempe G 2000 Nature 404 365
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[10] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 102 173504
[11] Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. China 4 190
[12] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[13] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
[14] Kimble H J 2008 Nature 453 1023
[15] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J, Zhang T C 2014 Appl. Phys. Lett. 104 113102
[16] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 J. Opt. Soc. Am. B 28 667
[17] McKeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurr D M, Kimble H J 2003 Phys. Rev. Lett. 90 133602
[18] Mnstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Comm. 159 63
[19] Sauer J A, Fortier K M, Chang M S, Hamley C D, Chapman M S 2004 Phys. Rev. A 69 051804(R)
[20] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 62 194203]
[21] Ritter S, N olleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195
[22] Zhang J, Li G, Wang J M, Zhang T C 2008 Acta Sin. Quantum Opt. 14 156 (in Chinese) [张静, 李刚, 王军民, 张天才 2008 量子光学学报 14 156]
[23] Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 53 1346]
[24] Kimble H J 1988 Phys. Scr. T 76 127
[25] Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front. Phys. 7 435
[26] He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3403
[27] Alt W 2002 Optik 113 142
[28] Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang J M, Zhang T C 2012 Sci. China: Phys. Mech. Astron. 55 1523
-
[1] Rempe G, Thompson R J, Kimble H J, Lalezari R 1992 Opt. Lett. 17 363
[2] Li L P, Liu T, Li G, Zhang T C, Wang J M 2004 Acta Phys. Sin. 53 1401 (in Chinese) [李利平, 刘涛, 李刚, 张天才, 王军民 2004 53 1401]
[3] Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132
[4] Chu S 1998 Rev. Mod. Phys. 70 685
[5] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[6] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[7] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[8] Pinkse P W H, Fischer T, Munstermann P, Rempe G 2000 Nature 404 365
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[10] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 102 173504
[11] Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. China 4 190
[12] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[13] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
[14] Kimble H J 2008 Nature 453 1023
[15] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J, Zhang T C 2014 Appl. Phys. Lett. 104 113102
[16] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 J. Opt. Soc. Am. B 28 667
[17] McKeever J, Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurr D M, Kimble H J 2003 Phys. Rev. Lett. 90 133602
[18] Mnstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Comm. 159 63
[19] Sauer J A, Fortier K M, Chang M S, Hamley C D, Chapman M S 2004 Phys. Rev. A 69 051804(R)
[20] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 62 194203]
[21] Ritter S, N olleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195
[22] Zhang J, Li G, Wang J M, Zhang T C 2008 Acta Sin. Quantum Opt. 14 156 (in Chinese) [张静, 李刚, 王军民, 张天才 2008 量子光学学报 14 156]
[23] Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 53 1346]
[24] Kimble H J 1988 Phys. Scr. T 76 127
[25] Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front. Phys. 7 435
[26] He J, Wang J, Yang B D, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3403
[27] Alt W 2002 Optik 113 142
[28] Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang J M, Zhang T C 2012 Sci. China: Phys. Mech. Astron. 55 1523
计量
- 文章访问数: 6605
- PDF下载量: 603
- 被引次数: 0