-
In the paper we study the effects of laser wavelength on capture and delivery of polystyrene microspheres using a nanofiber. Theoretical analysis shows that when the fiber diameter and the power of the laser are fixed, with the increase of the laser wavelength, the range and intensity of evanescent wave outside optical fiber become large and light gradient and scattering forces exerted on spheres also increase, which means that the ability to capture and transportation of spheres using nanofiber increases with the laser wavelength. The experimental phenomena and theoretical predictions are completely consistent with each other, when the lasers with three wavelengths are separately injected into the fiber with a diameter of 600 nm, with the increase of the wavelength, the critical power becomes small, and when the laser power is constant, with the increase of the wavelength, velocities of spheres also increase, showing that the ability to capture and transport the microsheres is enhanced.
-
Keywords:
- laser wavelength /
- nanofiber /
- evanescent field /
- capture and delivery
[1] Fazal F M, Block S M 2011 Nat. Photon. 5 318
[2] Applegate R W, Squier J, Vestad T, Oakey J, Marr D W M, Bado P, Dugan M A, Said A A 2006 Lab. Chip. 6 422
[3] Sun Y Y, Yuan X C, Ong L S, Bu J, Zhu S W, Liu R 2007 Appl. Phys. Lett. 90 0311071
[4] Ran L L, Guo Z Y, Qu S L 2012 Chin. Phys. B 21 104206
[5] Li Y, Guo H L, Huang L, Qu E, Li Z L, Li Z Y 2012 Chin. Phys. Lett. 29 014214
[6] Guffey M J, Scherer N F 2010 Nano Lett. 10 4302
[7] Min T L, Mears P J, Chubiz L M, Rao C V, Golding I, Chemla Y R 2009 Nat. Methods 6 831
[8] Grier D G 2003 Nature 424 810
[9] Carmon G, Feingold M 2011 Opt. Lett. 36 40
[10] Hu G J, Li J, Long Q, Tao T, Zhang G X, Wu X P 2011 Acta Phys. Sin. 60 030301 (in Chinese) [胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平 2011 60 030301]
[11] Brambilla G, Murugan G S, Wilkinson J S, Richardson D J 2007 Opt. Lett. 32 3041
[12] Xu L L, Li Y, Li B J 2012 New J. Phys. 14 033020
[13] Xin H B, Li B J 2011 Opt. Express 19 13285
[14] Xu C, Lei H X, Zhang Y, Li B J 2012 Opt. Express 20 1930
[15] Li Y, Xu L L, Li B J 2012 J. Nanopart. Res. 14 799
[16] Neuman K C, Block S M 2004 Rev. Sci. Instrum. 75 2787
-
[1] Fazal F M, Block S M 2011 Nat. Photon. 5 318
[2] Applegate R W, Squier J, Vestad T, Oakey J, Marr D W M, Bado P, Dugan M A, Said A A 2006 Lab. Chip. 6 422
[3] Sun Y Y, Yuan X C, Ong L S, Bu J, Zhu S W, Liu R 2007 Appl. Phys. Lett. 90 0311071
[4] Ran L L, Guo Z Y, Qu S L 2012 Chin. Phys. B 21 104206
[5] Li Y, Guo H L, Huang L, Qu E, Li Z L, Li Z Y 2012 Chin. Phys. Lett. 29 014214
[6] Guffey M J, Scherer N F 2010 Nano Lett. 10 4302
[7] Min T L, Mears P J, Chubiz L M, Rao C V, Golding I, Chemla Y R 2009 Nat. Methods 6 831
[8] Grier D G 2003 Nature 424 810
[9] Carmon G, Feingold M 2011 Opt. Lett. 36 40
[10] Hu G J, Li J, Long Q, Tao T, Zhang G X, Wu X P 2011 Acta Phys. Sin. 60 030301 (in Chinese) [胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平 2011 60 030301]
[11] Brambilla G, Murugan G S, Wilkinson J S, Richardson D J 2007 Opt. Lett. 32 3041
[12] Xu L L, Li Y, Li B J 2012 New J. Phys. 14 033020
[13] Xin H B, Li B J 2011 Opt. Express 19 13285
[14] Xu C, Lei H X, Zhang Y, Li B J 2012 Opt. Express 20 1930
[15] Li Y, Xu L L, Li B J 2012 J. Nanopart. Res. 14 799
[16] Neuman K C, Block S M 2004 Rev. Sci. Instrum. 75 2787
计量
- 文章访问数: 5728
- PDF下载量: 368
- 被引次数: 0