-
Rydberg atom is an atom with a high principal quantum number. Its quantum coherence effect enables the measuring of radio frequency electric fields in space. In this work, the radio frequency pulse response characteristics of the radio frequency receiving system based on the Rydberg atom under different pulse widths and intensities are studied. In the experiment, lasers with wavelengths of 852 nm and 510 nm are used to excite cesium atoms. Moreover, a radio frequency source emits pulse signals with different parameters to irradiate Rydberg atoms. The probe signal transmitted from the atomic vapor cell is directed at the photodetector. Moreover, the oscilloscope records the electrical signal obtained by photoelectric conversion. In addition, the simulation ranging is performed by setting different pulse delay times through the fiber delay instrument. It preliminarily proves that the radio frequency receiving system based on Rydberg atoms has a function of pulse ranging.
-
Keywords:
- Rydberg atoms /
- quantum coherence effect /
- pulse /
- ranging
[1] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar
[3] Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electromagn. Compat. 59 717Google Scholar
[4] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931Google Scholar
[5] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar
[6] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar
[7] Sedlacek J A, Schwettmann A, Kübler H, Low R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar
[8] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar
[9] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427Google Scholar
[10] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14Google Scholar
Liao K Y, Xu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Sin-Phys. Mech. Astron. 51 14Google Scholar
[11] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar
[12] Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar
[13] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar
[14] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar
[15] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar
[16] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar
[17] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2020 IEEE Antennas Propag. Mag. 63 63Google Scholar
[18] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar
[19] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar
[20] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 MDPI Appl. Sci. 10 1346Google Scholar
[21] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar
[22] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar
[23] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar
[24] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar
[25] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar
[26] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B: At., Mol. Opt. Phys. 53 094003Google Scholar
[27] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar
-
表 1 设定脉冲宽度和测量脉冲宽度的对比
Table 1. Comparison of set and measured pulse width.
Setting value/μs Measured value/μs Error value/μs Relative error value/% 50 50.5 0.5 1.0 20 21.3 1.3 6.5 10 11.0 1.0 10.0 5 6.2 1.2 24.0 2 2.6 0.6 30.0 1 3.9 2.9 290.0 表 2 设定距离和测量距离的对比
Table 2. Comparison of set and measured distance values.
Setting value/m Measured value/m Error/m 0 35 35 5000 4970 –30 10000 9965 –35 15000 15030 30 -
[1] Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar
[2] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar
[3] Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electromagn. Compat. 59 717Google Scholar
[4] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931Google Scholar
[5] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar
[6] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar
[7] Sedlacek J A, Schwettmann A, Kübler H, Low R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar
[8] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar
[9] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427Google Scholar
[10] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14Google Scholar
Liao K Y, Xu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Sin-Phys. Mech. Astron. 51 14Google Scholar
[11] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar
[12] Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar
[13] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar
[14] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar
[15] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar
[16] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar
[17] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2020 IEEE Antennas Propag. Mag. 63 63Google Scholar
[18] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar
[19] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar
[20] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 MDPI Appl. Sci. 10 1346Google Scholar
[21] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar
[22] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar
[23] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar
[24] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar
[25] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar
[26] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B: At., Mol. Opt. Phys. 53 094003Google Scholar
[27] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar
Catalog
Metrics
- Abstract views: 4289
- PDF Downloads: 135
- Cited By: 0