-
里德堡原子微波测量系统是不同于传统电子微波测量的新型全光学测量技术,它利用里德堡原子与微波场的强相干耦合效应,将微波场转化为原子相干光谱的特性测量,目前已成为高灵敏度高精度微波测量的主要研究领域。微波场与里德堡原子相干耦合过程中的退相干机理会极大影响微波场与相干光谱的转换效率,从而影响微波电场测量灵敏度。我们实验研究了在多能级里德堡铯原子系统中,实现中心频率为3.4GHz微波测量的最佳增强条件以及0.3GHz动态范围测量。利用铯原子D1线和D2线构成的多能级光学泵浦效应减小里德堡原子的退相干,从而增强里德堡原子的电磁诱导透明(EIT)量子相干特性,以及增强微波场作用产生的EIT-AT分裂谱,实现微波场的增强测量。The Rydberg-based microwave detection is an all-optical technology via using strong coherent interaction between Rydberg atoms and microwave field. Different from the traditional microwave meter, the Rydberg atomic sensing is a new-type microwave detector that transfers the microwave into a coherent optical spectrum, and attracts the rising interests due to its high sensibility. For this kind of sensor, the coherent effect induced by the coupling of atoms with microwave plays the key role, and the underline decoherence may decreases the sensitivity. In this work, we experimentally demonstrate a multi-level Rydberg atomic scheme with optimized quantum coherence that enhance both of the bandwidth and sensitivity for 4GHz microwave sensing. Using Optical pumping at D1 line, we show the enhanced quantum coherence of Rydberg electromagnetically induced transparency (EIT) and microwave induced Autler-Townes(AT) splitting in EIT Windows. Based on the enhanced EIT-AT spectrum, the enhanced sensitivity at 3.4GHz with 0.3GHz bandwidth can be realized. The experimental results show that in the stepped Rydberg EIT system, the spectral width of EIT and microwave field EIT-AT can be narrowed by OP, so the sensitivity of microwave electric field measurement can be improved. After optimizing the EIT amplitude and adding single-frequency microwaves, the sensitivity of the microwave electric field measurement observed by the A-T splitting interval was improved by 1.3 times. This work provides a reference for the application of atomic microwave detection.
-
Keywords:
- quantum coherence effect /
- Rydberg /
- Microwave measurements /
- Optical pumping
-
[1] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019Opt. Express 278848
[2] Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G 2021 IEEE Antennas Propag. Mag. 63 63
[3] Holloway C L, Simons M T, Gordon J A, Novotny D 2019IEEE Antennas Wirel Propag Lett 181853
[4] Meyer D H, Kunz P D, Cox K C 2021Phys. Rev. A 15014053
[5] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021Appl. Phys. 129154503
[6] Anderson D A, Sapiro R E, Raithel G 2021IEEE Transactions on Antennas and Propagation 69 2455
[7] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021Appl. Phys. Lett. 118114001
[8] Meyer D H, Kunz P D, Cox K C 2021Phys. Rev. Appl. 15 014053
[9] Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alú A, Ziolkowski R W 2022Appl. Phys. Lett. 120204001
[10] Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015J. Phys. B: At. Mol. Opt. Phys. 48 202001
[11] Hao J H, Jia F D, Cui Y, Wang Y H, Zhou F, Liu X B, Zhang J, Xie F, Bai J H, You J Q, Wang Y, Zhong Z P 2024Chinese Phys. B 33 050702
[12] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016Appl. Phys. Lett. 108 174101
[13] Jia F D, Yu Y H, Liu X B, Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2022J. Appl. Phys. 132 244401
[14] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2023Appl. Phys. Lett. 122 161103
[15] Li S H, Yuan J P, Wang L R 2020 Appl. Sci. 10 8110
[16] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432
[17] Chopinaud A, Pritchard J D 2021Phys. Rev. Applied 16 024008
[18] Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021Phys. Rev. A 104043103
[19] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020Nat. Phys. 16911
[20] Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M, Jia S T 2022Appl. Phys. Lett. 121 011101
[21] Mohapatra A K, Jackson T R, Adams C S 2007Phys. Rev. Lett. 98 113003
[22] Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 1715821
[23] Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017Sci. Rep. 742981
[24] Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456
[25] Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Zhong Z P, Xie F 2020Appl. Opt. 59 2108
[26] Fancher C T, Scherer D R, St. John M C, Marlow B L S 2021IEEE Trans. Quantum Eng. 2 1
[27] Li J K,Yang W G,Song Z F,Zhang H,Zhang L J,Zhao J M,Jia S T 2015Acta Phys. Sin.64163201[李敬奎,杨文广,宋振飞,张好,张临杰,赵建明,贾锁堂2015 64 163201]
[28] Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017Sci. Rep. 79726
[29] Su H J, Liou J Y, Lin I C, Chen Y H 2022 Opt. Express 30 1499
[30] He Z S, Tsai J H, Chang Y Y, Liao C C, Tsai C C 2013Phys. Rev. A 87 033402
[31] Moon H S, Lee L, Kim J B 2008Opt. Express 1612163
[32] Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010Phys. Rev. A 81 043803
[33] Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018Opt. Express 26 29931
[34] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021Appl. Phys. Lett. 119 214001
[35] Prajapati N, Akulshin A M, Novikova I 2018J. Opt. Soc. Am. B 35 1133
[36] Akulshin A M, Orel A A, McLean R J 2012J. Phys. B 45 015401
[37] Yang A H, Zhou W P, Zhao S C, Xu Y, Fedor J, Li Y X, Peng Y D 2020J. Opt. Soc. Am. B 371664
[38] Li S H, Yuan J P, Wang L R, Xiao L T, Jia S T 2022Front. Phys. 10 846687
[39] Wang Q X,Wang Z H,Liu Y X,Guan S J,He J,Zhang P F,Li G,Zhang T C 2023Acta Phys. Sin.72 087801[王勤霞,王志辉,刘岩鑫,管世军,何军,张鹏飞,李刚,张天才2023 72 087801]
[40] Moon H S, Lee W K, Lee L, Kim J B 2018IEEE Conf. Publ. 85 3965
计量
- 文章访问数: 26
- PDF下载量: 2
- 被引次数: 0