-
Metal halide perovskite has attracted much attention due to its adjustable color, high color purity, and excellent photoelectric properties. The quality of the perovskite film is one of the key factors that affect the performance of device. Here, PEA2Csn–1PbnBr3n+1 thin films are prepared by directly doping the ionic compound additive tetraphenylphosphine chloride (TPPCl) into the perovskite precursor of the light-emitting layer based on additive assisted technology. High-quality perovskite films with uniform, less pinholes and smaller grains are obtained. Not only is the photoluminescence (PL) performance of PeLEDs improved but the electroluminescence (EL) performance of PeLEDs with a double electron transport layer also turns better. The maximum brightness is 25285 cd/m2. The maximum current efficiency is 65.9 cd/A. And the maximum EQE is 17.3%. The method of adding ionic compounds to the perovskite precursor can not only improve the carrier transport behavior, but also make the formed small n crystal phases and large n crystal phase more balance, leading to the energy funnel effect to be enhanced. Further investigation by FTIR proves that the TPPCl can passivate the perovskite film, and thus greatly improving the EQE value of the PeLED. This researchpresents a simple and efficient method of developing high-performance quasi-two-dimensional green PeLEDs.
-
Keywords:
- perovskite light emitting doides /
- tetraphenylphosphine chloride /
- photoluminescence /
- electroluminescence
[1] Cheng L, Jiang T, Cao Y, Yi C, Wang N, Huang W, Wang J 2020 Adv. Mater. 32 1904163Google Scholar
[2] Kim Y H, Cho H, Lee T W 2016 Proc. Natl. Acad. Sci. U. S. A. 113 11694Google Scholar
[3] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 68 158504Google Scholar
Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar
[4] Gao X, Zhang X, Yin W, Wang H, Hu Y, Zhang Q, Shi Z, Colvin V L, Yu W W, Zhang Y 2019 Adv. Sci. 6 1900941Google Scholar
[5] Kim Y H, Kim S, Jo S H, Lee T W 2018 Small Methods 2 1800093Google Scholar
[6] Zhou Y Y, Zhao Y X 2019 Energy Environ. Sci. 12 1495Google Scholar
[7] 王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红 2020 69 038501Google Scholar
Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H, Gao C H 2020 Acta. Phys. Sin. 69 038501Google Scholar
[8] Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar
[9] Tan Z K, Moghaddam R S, Lai M L, et al. 2014 Nat. Nanotechnol. 9 687Google Scholar
[10] Jiang Y, Wei J, Yuan M 2021 J. Phys. Chem. Lett. 12 2593Google Scholar
[11] Zhang L, Sun C, He T, Jiang Y, Wei J, Huang Y, Yuan M 2021 Light Sci. Appl. 10 61Google Scholar
[12] Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar
[13] Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip H L, Hou L, Qi Z, Su S J 2021 Adv. Mater. 33 2103268Google Scholar
[14] Wang R, Zhang Y, Ma X J, Deng Y H, Shi J W, Wang X C, Jia Y L, Xu Q, Xiong Z H, Gao C H 2020 J. Mater. Chem. C 8 9845Google Scholar
[15] Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar
[16] Xu Q, Wang R, Jia Y L, He X L, Deng Y H, Yu F X, Zhang Y, Ma X J, Chen P, Zhang Y, Xiong Z H, Gao C H 2021 Org. Electron. 98 106295Google Scholar
[17] Kim B W, Heo J H, Park J K, Lee D S, Park H, Kim S Y, Kim J H, Im S H 2021 J. Ind. Eng. Chem. 97 417Google Scholar
[18] Cheng T, Qin C J, Watanabe S, Matsushima T, Adachi C 2020 Adv. Funct. Mater. 30 2001816Google Scholar
[19] Zhao B, Lian Y, Cui L, et al. 2020 Nat. Electron. 3 704Google Scholar
[20] Li T, Xiang T, Wang M S, Zhang W, Shi J S, Shao M, Xu T F, Ahmadi M, Wu X Y, Gao Z, Xu L, Chen P 2021 Laser Photonics Rev. 15 2000495Google Scholar
[21] Shi D, Adinolfi V, Comin R, et al. 2015 Science 347 519Google Scholar
[22] Li W J, Lynch V, Thompson H, Fox M A 1997 J. Am. Chem. Soc. 119 7211Google Scholar
[23] Gao C H, Cai S D, Gu W, Zhou D Y, Wang Z K, Liao L S 2012 ACS Appl. Mater Interfaces 4 5211Google Scholar
[24] Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar
[25] Jia Y L, Wang R, Zhang Y, Ma X J, Yu F X, Xiong Z Y, Zhou D Y, Xiong Z H, Gao C H 2019 J. Lumin. 209 251Google Scholar
-
图 1 不含/含TPPCl钙钛矿薄膜的光学性质 (a) XRD图谱, TPPCl的化学分子结构和相应的三维图; (b) 紫外-可见吸收光谱; (c) 归一化光致发光强度光谱, 及部分放大图(左)和荧光照片(右); (d) 时间分辨光致发光光谱
Figure 1. Optical properties of perovskite films w/o TPPCl and with TPPCl: (a) XRD patterns, the chemical molecule structure of TPPCl and the corresponding 3D diagram; (b) UV-vis absorption spectra; (c) normalized PL intensity spectra, partial enlarged image (left) and fluorescence photo (right); (d) TRPL spectra.
图 3 (a), (b) 不含TPPCl和含TPPCl钙钛矿薄膜的顶部SEM图像, 红色圈标记的是孔洞; (c) 钙钛矿发光二极管的器件结构示意图; (d) 器件C的SEM剖面图
Figure 3. (a), (b) The top-view SEM image of perovskite films w/o TPPCl and with TPPCl. The pinholes are circled in red; (c) the structure sketch map of quasi-2D PeLEDs; (d) the cross-sectional SEM images of device C.
图 4 不同浓度TPPCl的准二维PeLEDs的EL性能 (a) 电流密度-电压; (b) 亮度-电压; (c) 电流效率-电压-外部量子效率; (d) 在6 V下的归一化EL光谱
Figure 4. EL performance of all the PeLEDs with different concentration of TPPCl: (a) Current density-voltage (J-V); (b) luminance-voltage (L-V); (c) current efficiency-voltage-external quantum efficiency (CE-V-EQE); (d) normalized EL spectra under an applied voltage of 6 V.
表 1 不含/含TPPCl钙钛矿薄膜的TRPL拟合参数
Table 1. Summary of TRPL fitting parameters for perovskite films w/o TPPCl and with TPPCl.
Perovskite films $ {\tau _1} $/ns A1 $ {\tau _2} $/ns A2 $ {\tau _3} $/ns A3 ${\tau _{\rm ave} }$/ns w/o TPPCl 1.441±
0.0200.492±
0.0010.422±
0.0041.050±
0.0017.109±
0.0010.069±
0.0011.020±
0.001with TPPCl 4.677±
0.0800.394±
0.0011.027±
0.0082.705±
0.00125.007±
0.7100.048±
0.0011.849±
0.001表 2 不同浓度TPPCl的准二维PeLEDs的EL性能的参数
Table 2. Summary of EL performance parameters of quasi-2D PeLEDs with different TPPCl concentrations.
TPPCl
/(mg·mL–1) aVturn on
/(V) bLmax
/(cd·m–2) cCEmax
/(cd·A–1) dEQEmax
/% eFWHM
/nm f0 3.8 6212 9.2 2.4 18 1 3.6 16502 32.9 8.7 18 2 3.2 25285 65.9 17.3 18 4 3.2 13785 42.4 11.2 18 注: a钙钛矿薄膜中TPPCl的掺杂浓度; b器件亮度为1 cd/m2时的开启电压; c最大亮度; d最大电流效率; e最大外部量子效率; f 6 V电压下的半峰全宽. -
[1] Cheng L, Jiang T, Cao Y, Yi C, Wang N, Huang W, Wang J 2020 Adv. Mater. 32 1904163Google Scholar
[2] Kim Y H, Cho H, Lee T W 2016 Proc. Natl. Acad. Sci. U. S. A. 113 11694Google Scholar
[3] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 68 158504Google Scholar
Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar
[4] Gao X, Zhang X, Yin W, Wang H, Hu Y, Zhang Q, Shi Z, Colvin V L, Yu W W, Zhang Y 2019 Adv. Sci. 6 1900941Google Scholar
[5] Kim Y H, Kim S, Jo S H, Lee T W 2018 Small Methods 2 1800093Google Scholar
[6] Zhou Y Y, Zhao Y X 2019 Energy Environ. Sci. 12 1495Google Scholar
[7] 王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红 2020 69 038501Google Scholar
Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H, Gao C H 2020 Acta. Phys. Sin. 69 038501Google Scholar
[8] Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar
[9] Tan Z K, Moghaddam R S, Lai M L, et al. 2014 Nat. Nanotechnol. 9 687Google Scholar
[10] Jiang Y, Wei J, Yuan M 2021 J. Phys. Chem. Lett. 12 2593Google Scholar
[11] Zhang L, Sun C, He T, Jiang Y, Wei J, Huang Y, Yuan M 2021 Light Sci. Appl. 10 61Google Scholar
[12] Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar
[13] Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip H L, Hou L, Qi Z, Su S J 2021 Adv. Mater. 33 2103268Google Scholar
[14] Wang R, Zhang Y, Ma X J, Deng Y H, Shi J W, Wang X C, Jia Y L, Xu Q, Xiong Z H, Gao C H 2020 J. Mater. Chem. C 8 9845Google Scholar
[15] Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar
[16] Xu Q, Wang R, Jia Y L, He X L, Deng Y H, Yu F X, Zhang Y, Ma X J, Chen P, Zhang Y, Xiong Z H, Gao C H 2021 Org. Electron. 98 106295Google Scholar
[17] Kim B W, Heo J H, Park J K, Lee D S, Park H, Kim S Y, Kim J H, Im S H 2021 J. Ind. Eng. Chem. 97 417Google Scholar
[18] Cheng T, Qin C J, Watanabe S, Matsushima T, Adachi C 2020 Adv. Funct. Mater. 30 2001816Google Scholar
[19] Zhao B, Lian Y, Cui L, et al. 2020 Nat. Electron. 3 704Google Scholar
[20] Li T, Xiang T, Wang M S, Zhang W, Shi J S, Shao M, Xu T F, Ahmadi M, Wu X Y, Gao Z, Xu L, Chen P 2021 Laser Photonics Rev. 15 2000495Google Scholar
[21] Shi D, Adinolfi V, Comin R, et al. 2015 Science 347 519Google Scholar
[22] Li W J, Lynch V, Thompson H, Fox M A 1997 J. Am. Chem. Soc. 119 7211Google Scholar
[23] Gao C H, Cai S D, Gu W, Zhou D Y, Wang Z K, Liao L S 2012 ACS Appl. Mater Interfaces 4 5211Google Scholar
[24] Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar
[25] Jia Y L, Wang R, Zhang Y, Ma X J, Yu F X, Xiong Z Y, Zhou D Y, Xiong Z H, Gao C H 2019 J. Lumin. 209 251Google Scholar
Catalog
Metrics
- Abstract views: 4240
- PDF Downloads: 60
- Cited By: 0