搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基掺铒二氧化钛薄膜发光器件的电致发光: 共掺镱的增强发光作用

朱伟君 陈金鑫 高宇晗 杨德仁 马向阳

引用本文:
Citation:

硅基掺铒二氧化钛薄膜发光器件的电致发光: 共掺镱的增强发光作用

朱伟君, 陈金鑫, 高宇晗, 杨德仁, 马向阳

Electroluminescence from silicon-based light-emitting device with erbium-doped TiO2 films: Enhancement effect of ytterbium codoping

Zhu Wei-Jun, Chen Jin-Xin, Gao Yu-Han, Yang De-Ren, Ma Xiang-Yang
PDF
HTML
导出引用
  • 在我们以前的工作(Zhu C, Lü C Y, Gao Z F, Wang C X, Li D S, Ma X Y, Yang D R 2015 Appl. Phys. Lett. 107 131103)中, 利用掺铒(Er)二氧化钛薄膜(TiO2:Er)作为发光层, 实现了基于ITO/TiO2:Er/SiO2/n+-Si结构的发光器件的Er相关可见及近红外(约1540 nm)电致发光. 本文将镱(Yb)共掺入TiO2:Er薄膜中, 显著增强了Er相关可见及近红外电致发光. 研究表明, 一定量Yb的共掺会导致TiO2:Er薄膜由锐钛矿相转变为金红石相, 从而使得Er3+离子周围晶体场的对称性降低. 此外, Yb3+离子比Ti4+离子具有更大的半径, 这使TiO2基体中Er3+离子周围的晶体场进一步畸变. 晶体场的对称性降低及畸变使得Er3+离子4f能级间的跃迁概率增大. 由于上述原因, Yb在TiO2:Er薄膜的共掺显著增强了相关发光器件的电致发光.
    In the past years, light-emitting devices (LEDs) based on erbium (Er)-doped insulators or wide-bandgap semiconductors have received intensive attention because the intra-4f transition (4I13/24I15/2) of Er3+ ions at ~ 1540 nm has potential applications in the optical interconnection for silicon-based circuits. The LEDs with rare-earth (RE)-doped SiOx (x ≤ 2) or SiNx (x ≤ 4/3) films have been well investigated as the silicon-compatible emitters. However, they suffer difficulty in injecting current and easing fatigue. In this context, the LEDs with RE-doped oxide semiconductors have been extensively investigated out of research interest in recent years. Among the oxide semiconductors, TiO2 is a desirable host for RE-doping because it is transparent for visible and infrared light, and cost-effective, and has considerably high RE solubility. In our previous work (Zhu C, Lü C Y, Gao Z F, Wang C X, Li D S, Ma X Y, Yang D R 2015 Appl. Phys. Lett. 107 131103), we have realized erbium (Er)-related visible and near-infrared (~ 1540 nm) electroluminescence (EL) from the LED with a structure of ITO/TiO2:Er/SiO2/n+-Si, in which TiO2:Er refers to the Er-doped TiO2 film as the light-emitting layer. In this work, we co-dope ytterbium (Yb) into the TiO2:Er film in the aforementioned LED to significantly enhance the Er-related visible and near-infrared EL. It is revealed that a certain amount of Yb co-doping enables the TiO2:Er film to transform its crystal phase from anatase to rutile. Such a phase transformation reduces the symmetry of crystal field surrounding the Er3+ ions incorporated into the TiO2 host. Moreover, the substitution of over-sized Yb3+ ions for Ti4+ ions in the TiO2 host leads to the distortion of the crystal field around the Er3+ ions. The aforementioned symmetry-reduction and distortion of the crystal field increase the probabilities of the intra-4f transitions of Er3+ ions. Due to the aforementioned reason, the Yb co-doping into the TiO2:Er film remarkably enhances the EL from the corresponding LED. It is believed that the strategy of Yb-codoping can be adopted to enhance the EL from the LEDs with other RE-doped TiO2 films.
      通信作者: 马向阳, mxyoung@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61721005)资助的课题.
      Corresponding author: Ma Xiang-Yang, mxyoung@zju.edu.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 61721005).
    [1]

    Ennen H, Pomrenke G, Axmann A, Eisele K, Haydl W, Schneider J 1985 Appl. Phys. Lett. 46 381Google Scholar

    [2]

    Zavada J M, Jin S X, Nepal N, Lin J Y, Jiang H X, Chow P, Hertog B 2004 Appl. Phys. Lett. 84 1061Google Scholar

    [3]

    Ramírez J M, Cueff S, Berencén Y, Labbé C, Garrido B 2014 J. Appl. Phys. 116 083103Google Scholar

    [4]

    Cueff S, Manel Ramírez J, Kurvits J A, Berencén Y, Zia R, Garrido B, Rizk R, Labbé C 2013 Appl. Phys. Lett. 103 191109Google Scholar

    [5]

    Fujii M, Imakita K, Watanabe K, Hayashi S 2004 J. Appl. Phys. 95 272Google Scholar

    [6]

    Castagna M E, Coffa S, Monaco M, Muscara A, Caristia L, Lorenti S, Messina A 2003 Mater. Sci. Eng. B 105 83Google Scholar

    [7]

    Prucnal S, Sun J M, Rebohle L, Skorupa W 2008 Mater. Sci. Eng. B 146 241Google Scholar

    [8]

    Bang H, Piao G, Sawahata J, Li Z, Nomura M 2002 Phys. Stat. Sol. 0 430

    [9]

    Garter M, Scofield J, Birkhahn R, Steckl A J 1999 Appl. Phys. Lett. 74 182Google Scholar

    [10]

    Steckl A J, Birkhahn R 1998 Appl. Phys. Lett. 73 1700Google Scholar

    [11]

    Zhang Z, Qin J, Shi W, Zhang Y, Liu Y, Gao H, Mao Y 2018 Nanoscale. Res. Lett. 13 147Google Scholar

    [12]

    Mokoena T P, Linganiso E C, Kumar V, Swart H C, Cho S H, Ntwaeaborwa O M 2017 J. Colloid. Interface. Sci. 496 87Google Scholar

    [13]

    Wu Y, Lin S, Liu J, Ji Y, Xu J, Xu L, Chen K 2017 Opt. Express. 25 22648Google Scholar

    [14]

    Dehdouh H, Bensaha R, Zergoug M J M R E 2017 Mater. Res. Express 4 086408Google Scholar

    [15]

    Yang Y, Jin L, Ma X, Yang D 2012 Appl. Phys. Lett. 100 031103Google Scholar

    [16]

    Zhu C, Lü C Y, Gao Z F, Wang C X, Li D S, Ma X Y, Yang D R 2015 Appl. Phys. Lett. 107 131103Google Scholar

    [17]

    Judd B R 1962 Phys. Rev. 127 750Google Scholar

    [18]

    Ting C C, Chen S Y, Lee H Y 2003 J. Appl. Phys. 94 2102Google Scholar

    [19]

    Cao B S, He Y Y, Feng Z Q, Zhang H Z, Wei Z S, Dong B 2012 J. Sol-Gel. Sci. Techn. 62 419Google Scholar

    [20]

    Shang Q K, Yu H, Kong X G, Wang H D, Wang X, Sun Y J, Zhang Y L, Zeng Q H 2008 J. Lumin. 128 1211Google Scholar

    [21]

    Singh V, Rai V K, Singh N, Pathak M S, Rathaiah M, Venkatramu V, Patel R V, Singh P K, Dhoble S J 2017 Spectrochim. Acta, Part A 171 229Google Scholar

    [22]

    Xu D, Yao L, Lin H, Yang S, Zhang Y 2018 J. Cryst. Growth. 490 41Google Scholar

    [23]

    Yang Y, Lü C, Zhu C, Li S, Ma X, Yang D 2014 Appl. Phys. Lett. 104 201109Google Scholar

    [24]

    Wang S F, Hsu Y F, Lee R L, Lee Y S 2004 Appl. Surf. Sci. 229 140Google Scholar

    [25]

    Houng M P, Wang Y H, Chang W J 1999 J. Appl. Phys. 86 1488Google Scholar

    [26]

    Berencén Y, Wutzler R, Rebohle L, Hiller D, Ramírez J M, Rodríguez J A, Skorupa W, Garrido B 2013 Appl. Phys. Lett. 103 111102Google Scholar

    [27]

    Kadoshima M, Hiratani M, Shimamoto Y, Torii K, Miki H, Kimura S, Nabatame T 2003 Thin Solid Films 424 224Google Scholar

    [28]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042Google Scholar

    [29]

    Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A 2013 Nat. Mater. 12 798Google Scholar

    [30]

    Xiong G, Joly A G, Beck K M, Hess W P 2006 Phys. Stat. Sol. (c) 3 3598Google Scholar

    [31]

    Le Boulbar E, Millon E, Ntsoenzok E, Hakim B, Seiler W, Boulmer-Leborgne C, Perrière J 2012 Opt. Mater. 34 1419Google Scholar

    [32]

    Gao X, Liu X, Wen Q, Yang X, Xiao S 2014 J. Appl. Phys. 116 173105Google Scholar

  • 图 1  正偏压下的器件结构示意图

    Fig. 1.  Schematic diagram of the device under forward bias.

    图 2  经氧气氛下800°C热处理的TiO2:Er和TiO2:(Yb, Er)薄膜的XRD谱

    Fig. 2.  XRD patterns of the TiO2:Er and Yb-codoped TiO2:Er films annealed at 800 °C in O2 ambient.

    图 3  在热氧化的硅衬底上生长并经过氧气氛下800 °C热处理1 h后的(a) TiO2:Er和(b) TiO2:(Yb, Er)薄膜的截面HRTEM照片; (c) TiO2:Er薄膜的HRTEM照片; (d) TiO2:(Yb, Er)薄膜的HRTEM照片

    Fig. 3.  Typical cross-sectional HRTEM images of (a) TiO2:Er and (b) TiO2:(Yb, Er) films annealed at 800 °C for 1 h on the SiO2/Si substrates; typical HRTEM images of (c) TiO2:Er and (d) TiO2:(Yb, Er) films.

    图 4  基于TiO2:Er和TiO2:(Yb, Er)薄膜的两种发光器件 (a) 在相同注入电流下获得的可见及近红外EL谱图; (b)约550和(c) 1534 nm处的发光峰在不同注入电流下的积分强度

    Fig. 4.  Two light-emitting devices with the TiO2:Er and TiO2:(Yb, Er) films: (a) Visible and near-infrared EL spectra under the same injection currents; integrated EL intensities of the bands peaking at (b) about 550 and (c) 1534 nm under different injection currents.

    图 5  (a) 基于TiO2:Er和TiO2:(Yb, Er)薄膜的两种器件的I-V特性曲线; (b) 两种器件中的SiO2层在I-V特性曲线的快速上升部分所对应的lnJ和1/E的关系曲线

    Fig. 5.  (a) I-V characteristics for the two light-emitting devices with the TiO2:Er and TiO2:(Yb, Er) films; (b) plot of InJ versus 1/E corresponding to the fast rising part of I-V characteristics in SiO2 layer for the two LEDs with the TiO2:Er and TiO2:(Yb, Er) films, respectively.

    图 6  在足够高的正向偏压下, 基于ITO/TiO2:Er/SiO2/n+-Si结构的发光器件的能带结构示意图以及Er3+离子的碰撞激发和退激发的示意图

    Fig. 6.  Schematic energy band diagram for the TiO2:Er-based device under sufficiently high forward bias voltage and the schematic diagram of impact excitation and de-excitation processes for Er3+ ion.

    Baidu
  • [1]

    Ennen H, Pomrenke G, Axmann A, Eisele K, Haydl W, Schneider J 1985 Appl. Phys. Lett. 46 381Google Scholar

    [2]

    Zavada J M, Jin S X, Nepal N, Lin J Y, Jiang H X, Chow P, Hertog B 2004 Appl. Phys. Lett. 84 1061Google Scholar

    [3]

    Ramírez J M, Cueff S, Berencén Y, Labbé C, Garrido B 2014 J. Appl. Phys. 116 083103Google Scholar

    [4]

    Cueff S, Manel Ramírez J, Kurvits J A, Berencén Y, Zia R, Garrido B, Rizk R, Labbé C 2013 Appl. Phys. Lett. 103 191109Google Scholar

    [5]

    Fujii M, Imakita K, Watanabe K, Hayashi S 2004 J. Appl. Phys. 95 272Google Scholar

    [6]

    Castagna M E, Coffa S, Monaco M, Muscara A, Caristia L, Lorenti S, Messina A 2003 Mater. Sci. Eng. B 105 83Google Scholar

    [7]

    Prucnal S, Sun J M, Rebohle L, Skorupa W 2008 Mater. Sci. Eng. B 146 241Google Scholar

    [8]

    Bang H, Piao G, Sawahata J, Li Z, Nomura M 2002 Phys. Stat. Sol. 0 430

    [9]

    Garter M, Scofield J, Birkhahn R, Steckl A J 1999 Appl. Phys. Lett. 74 182Google Scholar

    [10]

    Steckl A J, Birkhahn R 1998 Appl. Phys. Lett. 73 1700Google Scholar

    [11]

    Zhang Z, Qin J, Shi W, Zhang Y, Liu Y, Gao H, Mao Y 2018 Nanoscale. Res. Lett. 13 147Google Scholar

    [12]

    Mokoena T P, Linganiso E C, Kumar V, Swart H C, Cho S H, Ntwaeaborwa O M 2017 J. Colloid. Interface. Sci. 496 87Google Scholar

    [13]

    Wu Y, Lin S, Liu J, Ji Y, Xu J, Xu L, Chen K 2017 Opt. Express. 25 22648Google Scholar

    [14]

    Dehdouh H, Bensaha R, Zergoug M J M R E 2017 Mater. Res. Express 4 086408Google Scholar

    [15]

    Yang Y, Jin L, Ma X, Yang D 2012 Appl. Phys. Lett. 100 031103Google Scholar

    [16]

    Zhu C, Lü C Y, Gao Z F, Wang C X, Li D S, Ma X Y, Yang D R 2015 Appl. Phys. Lett. 107 131103Google Scholar

    [17]

    Judd B R 1962 Phys. Rev. 127 750Google Scholar

    [18]

    Ting C C, Chen S Y, Lee H Y 2003 J. Appl. Phys. 94 2102Google Scholar

    [19]

    Cao B S, He Y Y, Feng Z Q, Zhang H Z, Wei Z S, Dong B 2012 J. Sol-Gel. Sci. Techn. 62 419Google Scholar

    [20]

    Shang Q K, Yu H, Kong X G, Wang H D, Wang X, Sun Y J, Zhang Y L, Zeng Q H 2008 J. Lumin. 128 1211Google Scholar

    [21]

    Singh V, Rai V K, Singh N, Pathak M S, Rathaiah M, Venkatramu V, Patel R V, Singh P K, Dhoble S J 2017 Spectrochim. Acta, Part A 171 229Google Scholar

    [22]

    Xu D, Yao L, Lin H, Yang S, Zhang Y 2018 J. Cryst. Growth. 490 41Google Scholar

    [23]

    Yang Y, Lü C, Zhu C, Li S, Ma X, Yang D 2014 Appl. Phys. Lett. 104 201109Google Scholar

    [24]

    Wang S F, Hsu Y F, Lee R L, Lee Y S 2004 Appl. Surf. Sci. 229 140Google Scholar

    [25]

    Houng M P, Wang Y H, Chang W J 1999 J. Appl. Phys. 86 1488Google Scholar

    [26]

    Berencén Y, Wutzler R, Rebohle L, Hiller D, Ramírez J M, Rodríguez J A, Skorupa W, Garrido B 2013 Appl. Phys. Lett. 103 111102Google Scholar

    [27]

    Kadoshima M, Hiratani M, Shimamoto Y, Torii K, Miki H, Kimura S, Nabatame T 2003 Thin Solid Films 424 224Google Scholar

    [28]

    Tang H, Prasad K, Sanjinès R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042Google Scholar

    [29]

    Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A 2013 Nat. Mater. 12 798Google Scholar

    [30]

    Xiong G, Joly A G, Beck K M, Hess W P 2006 Phys. Stat. Sol. (c) 3 3598Google Scholar

    [31]

    Le Boulbar E, Millon E, Ntsoenzok E, Hakim B, Seiler W, Boulmer-Leborgne C, Perrière J 2012 Opt. Mater. 34 1419Google Scholar

    [32]

    Gao X, Liu X, Wen Q, Yang X, Xiao S 2014 J. Appl. Phys. 116 173105Google Scholar

  • [1] 黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红. 基于离子化合物的高性能钙钛矿发光二极管.  , 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [2] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率.  , 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [3] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [4] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究.  , 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [5] 高松, 赵谡玲, 徐征, 杨一帆, 刘志民, 谢小漪. 氧化锌纳米颗粒薄膜的近紫外电致发光特性研究.  , 2014, 63(15): 157702. doi: 10.7498/aps.63.157702
    [6] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究.  , 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [7] 冯秋菊, 蒋俊岩, 唐凯, 吕佳音, 刘洋, 李荣, 郭慧颖, 徐坤, 宋哲, 李梦轲. CVD法制备p-ZnO薄膜/n-Si异质结发光二极管及其性能研究.  , 2013, 62(5): 057802. doi: 10.7498/aps.62.057802
    [8] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管.  , 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [9] 潘书万, 陈松岩, 周笔, 黄巍, 李成, 赖虹凯, 王加贤. 硅基硒纳米颗粒的发光特性研究.  , 2013, 62(17): 177802. doi: 10.7498/aps.62.177802
    [10] 朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟. 量子阱结构对有机电致发光器件效率的影响.  , 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [11] 李春, 彭俊彪, 曾文进. 新型TPBI/Ag阴极结构的红色有机发光二极管.  , 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [12] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究.  , 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [13] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究.  , 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [14] 锁 钒, 于军胜, 邓 静, 蒋亚东, 王 睿, 汪伟志, 刘天西. 芴-咔唑新型共聚物/PVK掺杂体系的电致发光特性研究.  , 2007, 56(11): 6685-6690. doi: 10.7498/aps.56.6685
    [15] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管.  , 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [16] 聂 海, 张 波, 唐先忠. 聚合物掺杂有机小分子发光二极管的电致发光与杂质陷阱效应.  , 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [17] 姜 燕, 杨盛谊, 张秀龙, 滕 枫, 徐 征, 侯延冰. 基于ZnSe的有机-无机异质结电致发光器件.  , 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
    [18] 侯林涛, 侯 琼, 彭俊彪, 曹 镛. 三元共聚物饱和红色电致发光研究.  , 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
    [19] 赵 辉, 何大伟, 王永生, 徐叙瑢. ZnS型薄膜电致发光器件输运过程的解析能带模拟.  , 2000, 49(9): 1867-1872. doi: 10.7498/aps.49.1867
    [20] 许秀来, 徐 征, 侯延冰, 苏艳梅, 徐 叙. Gd3Ga5O12:Ag薄膜电致发光材料的制备及其发光性质.  , 2000, 49(7): 1390-1393. doi: 10.7498/aps.49.1390
计量
  • 文章访问数:  9201
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map