-
With their excellent photoelectric properties, perovskite solar cells have become the most promising photovoltaic devices in recent years. However, owing to defects and energy level misalignment, the non-radiative recombination loss of the perovskite solar cell will increase, which hinders the its efficiency and operational stability from being improved further. Therefore, it is very important to reduce the loss caused by energy level misalignment for realizing high-efficiency perovskite solar cells. In order to solve the above-mentioned problems, perovskite solar cell with dual electron transport layer (ETL) is studied in this work. The dual-layer structure forms a stepped conduction band structure to reduce the conduction band offset between the active layer and the transport layer, which reduces the interface recombination between the two structures and improves device performance. In addition, the influences of the defect density on the cell performance for the two ETL structures are also discussed. With the continuous increase of the defect density, the performance of the single-layer structure decreases more obviously. While the dual ETL structure can alleviate the performance dependence on the defect density in comparison with the single ETL structure. Therefore, the use of dual ETL can improve the performance of perovskite solar cells and defect tolerance, which provides guidance for designing high-performance solar cells.
-
Keywords:
- perovskite solar cell /
- double electron transport layer /
- interface recombination /
- defect density
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[2] Akkerman Q A, Raino G, Kovalenko M V, Manna L 2018 Nat. Mater 17 394
Google Scholar
[3] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[4] Mazzarella L, Lin Y H, Kirner S, et al. 2019 Adv. Energy Mater. 9 14
Google Scholar
[5] Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302
Google Scholar
[6] Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036
Google Scholar
[7] Kim J Y, Lee J W, Jung H S, Shin H, Park N G 2020 Chem. Rev. 120 7867
Google Scholar
[8] Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S Y 2018 Sci. China Mater. 61 1257
Google Scholar
[9] Shi P, Ding Y, Liu C, Yang Y, Arain Z, Cai M, Ren Y, Hayat T, Alsaedi A, Dai S 2019 Sci. China Mater. 62 1846
Google Scholar
[10] Shi X Q, Chen J Q, Wu Y H, Cai M L, Shi P J, Ma S, Liu C, Liu X P, Dai S Y 2020 ACS Sustain. Chem. Eng. 8 4267
Google Scholar
[11] Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M 2016 Nat. Energy 1 16142
Google Scholar
[12] Shubham, Raghvendra, Pathak C, Pandey S K 2020 IEEE Trans. Electro. Dev. 67 2837
Google Scholar
[13] Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081
Google Scholar
[14] Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102
Google Scholar
[15] Kim G W, Kang G, Kim J, Lee G Y, Kim H I, Pyeon L, Lee J, Park T 2016 Energ. Environ. Sci. 9 2326
Google Scholar
[16] Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[17] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 70 038801
Google Scholar
Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801
Google Scholar
[18] Gao Y, Wu Y, Liu Y, Chen C, Shen X, Bai X, Shi Z, Yu W W, Dai Q, Zhang Y 2019 Solar RRL 3 1900314
Google Scholar
[19] Li N, Yan J, Ai Y, Jiang E, Lin L, Shou C, Yan B, Sheng J, Ye J 2019 Sci. China Mater. 63 207
Google Scholar
[20] Shi X, Tao Y, Li Z, Peng H, Cai M, Liu X, Zhang Z, Dai S 2021 Sci. China Mater. 64 1858
Google Scholar
[21] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 64 038802
Google Scholar
Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802
Google Scholar
[22] Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 Acs Appl. Energ. Mater. 1 2215
Google Scholar
[23] Wang Y, Duan C, Zhang X, Rujisamphan N, Liu Y, Li Y, Yuan J, Ma W 2020 ACS Appl. Mater. Inter. 12 31659
Google Scholar
[24] Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934
Google Scholar
[25] Singh N, Agarwal A, Agarwal M 2021 Superlattice. Microst 149 106750
Google Scholar
[26] Azri F, Meftah A, Sengouga N, Meftah A 2019 Solar Energy 181 372
Google Scholar
[27] Ahmed S, Jannat F, Khan M A K, Alim M A 2021 Optik 225 165765
Google Scholar
[28] Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron 126 75
Google Scholar
[29] Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504
Google Scholar
-
表 1 仿真结构中材料参数
Table 1. Simulation structure parameters.
Layer properties Spiro-OMeTAD CH3NH3PbI3 SnO2 TiO2 厚度 L/nm 350[25] 400[26] 50[27] 50[27] 电子亲和能 χ/eV 3.0[25] 3.9[26] 4.5[23] 4.2[23] 介电常数 εr 3.0[25] 6.5[26] 9.0[27] 9.0[27] 禁带宽度 Eg/eV 2.2[25] 1.5[26] 4.0[23] 3.6[23] 受主掺杂浓度 NA/cm–3 1.0 × 1018[25] 5.21 × 109[26] 0[27] 0[27] 施主掺杂浓度 ND/cm–3 0[25] 5.21 × 109[26] 1.0 × 1018[27] 1.0 × 1018[27] 电子迁移率 μn/(cm2·V–1·s–1) 2.0 × 10–4[25] 20[26] 20[27] 20[27] 空穴迁移率 μp/(cm2·V–1·s–1) 2.0 × 10–4[25] 20[26] 10[27] 10[27] 缺陷态密度 Nt/cm–3 1.0 × 1013[25] 2.5 × 1013[26] 1.0 × 1015[27] 1.0 × 1015[27] 导带有效密度 Nc/cm–3 2.2 × 1018[25] 2.2 × 1018[26] 2.2 × 1018[28] 2.2 × 1018[28] 价带有效密度 Nv/cm–3 1.8 × 1019[25] 1.8 × 1019[26] 1.8 × 1019[28] 1.8 × 1019[28] -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[2] Akkerman Q A, Raino G, Kovalenko M V, Manna L 2018 Nat. Mater 17 394
Google Scholar
[3] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[4] Mazzarella L, Lin Y H, Kirner S, et al. 2019 Adv. Energy Mater. 9 14
Google Scholar
[5] Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302
Google Scholar
[6] Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036
Google Scholar
[7] Kim J Y, Lee J W, Jung H S, Shin H, Park N G 2020 Chem. Rev. 120 7867
Google Scholar
[8] Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S Y 2018 Sci. China Mater. 61 1257
Google Scholar
[9] Shi P, Ding Y, Liu C, Yang Y, Arain Z, Cai M, Ren Y, Hayat T, Alsaedi A, Dai S 2019 Sci. China Mater. 62 1846
Google Scholar
[10] Shi X Q, Chen J Q, Wu Y H, Cai M L, Shi P J, Ma S, Liu C, Liu X P, Dai S Y 2020 ACS Sustain. Chem. Eng. 8 4267
Google Scholar
[11] Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M 2016 Nat. Energy 1 16142
Google Scholar
[12] Shubham, Raghvendra, Pathak C, Pandey S K 2020 IEEE Trans. Electro. Dev. 67 2837
Google Scholar
[13] Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081
Google Scholar
[14] Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102
Google Scholar
[15] Kim G W, Kang G, Kim J, Lee G Y, Kim H I, Pyeon L, Lee J, Park T 2016 Energ. Environ. Sci. 9 2326
Google Scholar
[16] Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[17] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 70 038801
Google Scholar
Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801
Google Scholar
[18] Gao Y, Wu Y, Liu Y, Chen C, Shen X, Bai X, Shi Z, Yu W W, Dai Q, Zhang Y 2019 Solar RRL 3 1900314
Google Scholar
[19] Li N, Yan J, Ai Y, Jiang E, Lin L, Shou C, Yan B, Sheng J, Ye J 2019 Sci. China Mater. 63 207
Google Scholar
[20] Shi X, Tao Y, Li Z, Peng H, Cai M, Liu X, Zhang Z, Dai S 2021 Sci. China Mater. 64 1858
Google Scholar
[21] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 64 038802
Google Scholar
Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802
Google Scholar
[22] Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 Acs Appl. Energ. Mater. 1 2215
Google Scholar
[23] Wang Y, Duan C, Zhang X, Rujisamphan N, Liu Y, Li Y, Yuan J, Ma W 2020 ACS Appl. Mater. Inter. 12 31659
Google Scholar
[24] Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934
Google Scholar
[25] Singh N, Agarwal A, Agarwal M 2021 Superlattice. Microst 149 106750
Google Scholar
[26] Azri F, Meftah A, Sengouga N, Meftah A 2019 Solar Energy 181 372
Google Scholar
[27] Ahmed S, Jannat F, Khan M A K, Alim M A 2021 Optik 225 165765
Google Scholar
[28] Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron 126 75
Google Scholar
[29] Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504
Google Scholar
Catalog
Metrics
- Abstract views: 7338
- PDF Downloads: 201
- Cited By: 0