Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Giant coercivity in single crystal Ta3FeS6 film

Liu Xiao-Wei Xiong Jun-Lin Wang Li-Zheng Liang Shi-Jun Cheng Bin Miao Feng

Citation:

Giant coercivity in single crystal Ta3FeS6 film

Liu Xiao-Wei, Xiong Jun-Lin, Wang Li-Zheng, Liang Shi-Jun, Cheng Bin, Miao Feng
PDF
HTML
Get Citation
  • Van der Waals (vdW) layered ferromagnetic materials provide a unique platform for fundamental spintronic research, and have broad application prospects in the next-generation spintronic devices. In this study, we synthesize high-quality single crystals of vdW intrinsic ferromagnet Ta3FeS6 by the chemical vapor transport method. We obtain thin layer samples of Ta3FeS6 with thickness values ranging from 19 to 100 nm by the mechanical exfoliation method, and find that their corresponding Curie temperatures are between 176 and 133 K. The anomalous Hall measurement shows that the Ta3FeS6 has out-of-plane ferromagnetism with the coercivity reaching 7.6 T at 1.5 K, which is the largest value in those of the layered vdW ferromagnetic materials reported so far. In addition, we observe that the reversal polarity of the hysteresis loop changes sign with temperature increasing. Our work provides an opportunity to construct stable and miniaturized spintronic devices and present a new platform for studying spintronics based on van der Waals magnetic materials.
      Corresponding author: Cheng Bin, bincheng@njust.edu.cn ; Miao Feng, miao@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074176, 62122036, 62034004, 61921005, 61974176), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 020414380179).
    [1]

    Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16

    [2]

    Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 1

    [3]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [4]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530Google Scholar

    [5]

    Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784Google Scholar

    [6]

    Li Z, Zhang S F 2004 Phys. Rev. B 69 134416Google Scholar

    [7]

    Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502Google Scholar

    [8]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [9]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [10]

    Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139Google Scholar

    [11]

    Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L, Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 Nat. Commun. 12 1Google Scholar

    [12]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [13]

    Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148Google Scholar

    [14]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [15]

    Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [16]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [17]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [18]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [19]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [20]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [21]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [22]

    Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [23]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598

    [26]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [27]

    Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969Google Scholar

    [28]

    Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119Google Scholar

    [29]

    Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722Google Scholar

    [30]

    Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428Google Scholar

    [31]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar

    [32]

    Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn. Magn. Mater. 324 1770Google Scholar

    [33]

    Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1

    [34]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [35]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [36]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar

    [37]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [38]

    Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006Google Scholar

    [39]

    Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 Phys. Rev. B 79 195129Google Scholar

    [40]

    Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809Google Scholar

    [41]

    Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416Google Scholar

    [42]

    Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901Google Scholar

    [43]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647Google Scholar

    [44]

    Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141Google Scholar

    [45]

    Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116Google Scholar

    [46]

    Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 Phys. Rev. Mater. 5 L041001Google Scholar

    [47]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [48]

    Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465Google Scholar

    [49]

    Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672Google Scholar

    [50]

    Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar

    [51]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [52]

    Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009

    [53]

    Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622Google Scholar

    [54]

    Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar

    [55]

    Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar

    [56]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [57]

    Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar

    [58]

    Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01Google Scholar

    [59]

    Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403Google Scholar

    [60]

    Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056Google Scholar

  • 图 1  (a) Ta3FeS6的晶体结构. 左侧为1层Ta3FeS6的原子结构俯视图, 右侧为Ta3FeS6晶体的三维结构示意图, 其中铁原子嵌在H-TaS2的层间; (b) Ta3FeS6单晶的能量色散X射线光谱, 插图为通过CVT方法生长的Ta3FeS6单晶的光学照片; (c) Ta3FeS6单晶的拉曼光谱; (d)原子力显微镜对Ta3FeS6器件1的样品厚度测量结果

    Figure 1.  (a) Crystal structure of Ta3FeS6. The left panel is the top view of the atomic structure of single layer of Ta3FeS6, and the right panel is the three-dimensional structure diagram of Ta3FeS6 crystal, in which iron atoms are embedded between the layers of H-TaS2. (b) Energy dispersive X-ray spectrum of Ta3FeS6 single crystal. The inset is the optical photo of Ta3FeS6 single crystal grown by chemical vapor transport method. (c) Raman spectrum of Ta3FeS6. (d) Measurement result of sample thickness of Ta3FeS6 device 1 by atomic force microscope.

    图 2  (a) 器件结构和外部测量电路的示意图; (b) 器件1的纵向电阻Rxx的降温曲线. 插图为器件1的光学照片; (c) 器件2的纵向电阻Rxx的降温曲线. 插图为器件2 的光学照片

    Figure 2.  (a) Diagram of the device and external circuit. The cooling curve of longitudinal resistance Rxx of the device 1 (b) and device 2 (c). The inset is the optical photograph of the device 1 (b) and device 2 (c).

    图 3  (a) 器件1温度依赖的磁阻和反常霍尔电阻. 红线代表正向扫描, 蓝线代表反向扫描; (b) 器件1和器件2矫顽场随温度的变化关系. 插图为器件1和器件2温度依赖的矫顽场在高温区的局部放大图; (c) 器件1载流子浓度随温度的变化关系; (d) 已报道的二维铁磁材料(VSe2[56], VI3[57], Fe3GeTe2 单层[17], Fe3GeTe2 12 nm[18], Fe2Co0.7GeTe2[58], Cr2Ge2Te6 7 nm[59], Cr3Cl2(pyrazine)2[60], Ta3FeS6 纳米片[29], Fe0.28TaS2 80—180 nm[55])不同温度下矫顽场的统计结果

    Figure 3.  (a) Temperature dependent magneto-resistance and anomalous Hall resistance of device 1. The red line represents forward scanning and the blue line represents reverse scanning. (b) The relationship between coercivity and temperature for device 1 and device 2. The inset shows a local enlarged view of the temperature-dependent coercive fields of device 1 and device 2 in the high temperature zone. (c) The carrier concentration as a function of temperature in device 1. (d) The statistical results of coercivity of the reported two-dimensional ferromagnetic materials (VSe2[56], VI3[57], Fe3GeTe2 monolayer[17], Fe3GeTe2 12 nm[18], Fe2Co0.7GeTe2[58], Cr2Ge2Te6 7 nm[59], Cr3Cl2(pyrazine)2[60], Ta3FeS6 nanosheet[29], Fe0.28TaS2 80–180 nm[55]) at different temperatures.

    Baidu
  • [1]

    Kang W, Zhang Y, Wang Z H, Klein J O, Chappert C, Ravelosona D, Wang G F, Zhang Y G, Zhao W S 2015 ACM J. Emerging Technol. Comput. Syst. (JETC) 12(SI) 16

    [2]

    Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J P, Yang S H, Garello K, Zhang W 2021 IEEE Trans. Magn. 57 1

    [3]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [4]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S 2017 Mater. Today 20 530Google Scholar

    [5]

    Zhao W S, Chappert C, Javerliac V, Noziere J P 2009 IEEE Trans. Magn. 45 3784Google Scholar

    [6]

    Li Z, Zhang S F 2004 Phys. Rev. B 69 134416Google Scholar

    [7]

    Han X F, Wang X, Wan C H, Yu G Q, Lü X R 2021 Appl. Phys. Lett. 118 120502Google Scholar

    [8]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [9]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [10]

    Han W, Maekawa S, Xie X C 2020 Nat. Mater. 19 139Google Scholar

    [11]

    Chen G Y, Qi S M, Liu J Q, Chen D, Wang J J, Yan S L, Zhang Y, Cao S M, Lu M, Tian S B, Chen K Y, Yu P, Liu Z, Xie X C, Xiao J, Shindou R, Chen J H 2021 Nat. Commun. 12 1Google Scholar

    [12]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [13]

    Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H, Woo S 2020 Nat. Electron. 3 148Google Scholar

    [14]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H L, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [15]

    Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [16]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [17]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [18]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [19]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [20]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [21]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [22]

    Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C H, Han X F, Shao Q M, Taniguchi T, Watanabe K, Zang J D, Mao Z Q, Zhang X X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [23]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X X, Han Z, Zhang Z D, Zhang G Y, Yu G Q, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Wang Z, Gutiérrez Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Chun K C, Zhao H, Harms J D, Kim T H, Wang J P, Kim C H A 2012 IEEE J. Solid-State Circuits 48 598

    [26]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [27]

    Wang Y J, Wang L Z, Liu X W, Wu H, Wang P F, Yan D Y, Cheng B, Shi Y G, Watanabe K, Taniguchi T, Liang S J, Miao F 2019 Nano Lett. 19 3969Google Scholar

    [28]

    Fan S, Manuel I, Al-Wahish A, O'Neal K R, Smith K A, Won C J, Kim J W, Cheong S W, Haraldsen J T, Musfeldt J L 2017 Phys. Rev. B 96 205119Google Scholar

    [29]

    Su J W, Wang M S, Liu G H, Li H Q, Han J B, Zhai T Y 2020 Adv. Sc. 7 2001722Google Scholar

    [30]

    Palacios J J, Fernández Rossier J, Brey L 2008 Phys. Rev. B 77 195428Google Scholar

    [31]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar

    [32]

    Zhang Y J, Hu J F, Cao E S, Sun L, Qin H W 2012 J. Magn. Magn. Mater. 324 1770Google Scholar

    [33]

    Liu Y Y, Wu J J, Hackenberg K P, Zhang J, Wang Y M, Yang Y C, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood Brandon C, Yakobson B I 2017 Nat. Energy 2 1

    [34]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [35]

    Meng L J, Zhou Z, Xu M Q, Yang S Q, Si K P, Liu L X, Wang X G, Jiang H N, Li B X, Qin P X, Zhang P, Wang J L, Liu Z Q, Tang P Z, Ye Y, Zhou W, Bao L H, Gao H J, Gong Y J 2021 Nat. Commun. 12 809Google Scholar

    [36]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar

    [37]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [38]

    Yue D, Jin X F 2017 J. Phys. Soc. Jpn. 86 011006Google Scholar

    [39]

    Kovalev A A, Tserkovnyak Y, Výborný K, Sinova J 2009 Phys. Rev. B 79 195129Google Scholar

    [40]

    Li H X, Wang L J, Chen J S, Yu T, Zhou L, Qiu Y, He H T, Ye F, Sou I K, Wang G 2019 ACS Appl. Nano Mater. 2 6809Google Scholar

    [41]

    Keskin V, Aktaş B, Schmalhorst J, Reiss G, Zhang H, Weischenberg J, Mokrousov Y 2013 Appl. Phys. Lett. 102 022416Google Scholar

    [42]

    Winer G, Segal A, Karpovski M, Shelukhin V, Gerber A 2015 J. Appl. Phys. 118 173901Google Scholar

    [43]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647Google Scholar

    [44]

    Dijkstra J, Weitering H H, Vanbruggen C F, Haas C, Degroot R A 1989 J. Phys. Condens. Matter 1 9141Google Scholar

    [45]

    Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J, Xue Q K 2018 Nano Res. 11 3116Google Scholar

    [46]

    Liu X W, Wang Y J, Guo Q Q, Liang S J, Xu T, Liu B, Qiao J B, Lai S Q, Zeng J W, Hao S, Gu C Y, Cao T J, Wang C Y, Wang Y, Pan C, Su G X, Nie Y F, Wan X G, Sun L T, Wang Z L, He L, Cheng B, Miao F 2021 Phys. Rev. Mater. 5 L041001Google Scholar

    [47]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [48]

    Ge J, Luo T C, Lin Z Z, Shi J P, Liu Y Z, Wang P Y, Zhang Y F, Duan W H, Wang J 2021 Adv. Mater. 33 2005465Google Scholar

    [49]

    Guguchia Z, Kerelsky A, Edelberg D, Banerjee S, Rohr F v, Scullion D, Augustin M, Scully M, Rhodes D A, Shermadini Z, Luetkens H, Shengelaya A, Baines C, Morenzoni E, Amato A, Hone J C, Khasanov R, Billinge S J L, Santos E, Pasupathy A N, Uemura Y J 2018 Sci. Adv. 4 eaat3672Google Scholar

    [50]

    Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S 2020 Adv. Mater. 32 2000693Google Scholar

    [51]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [52]

    Arnold F, Stan R-M, Mahatha S K, Lund H E, Curcio D, Dendzik M, Bana H, Travaglia E, Bignardi L, Lacovig P, Lizzit D, Li Z, Bianchi M, Miwa J A, Bremholm M, Lizzit S, Hofmann P, Sanders C E 2018 2D Mater. 5 045009

    [53]

    Cai L, He J F, Liu Q H, Yao T, Chen L, Yan W S, Hu F C, Jiang Y, Zhao Y D, Hu T D, Sun Z H, Wei S Q 2015 J. Am. Chem. Soc. 137 2622Google Scholar

    [54]

    Horibe Y, Yang J J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar

    [55]

    Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar

    [56]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [57]

    Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C H, Khomskii D I, Saxena S S, Park J G 2019 Phys. Rev. B 99 041402Google Scholar

    [58]

    Hwang I, Coak M J, Lee N, Ko D S, Oh Y, Jeon I, Son S, Zhang K X, Kim J, Park J G 2019 J. Phys. Condens. Matter 31 50LT01Google Scholar

    [59]

    Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phy. Lett. 115 232403Google Scholar

    [60]

    Pedersen K S, Perlepe P, Aubrey M L, Woodruff D N, Reyes-Lillo S E, Reinholdt A, Voigt L, Li Z S, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton J B, Long J R, Clérac R 2018 Nat. Chem. 10 1056Google Scholar

  • [1] Ma Ze-Cheng, Liu Zeng-Lin, Cheng Bin, Liang Shi-Jun, Miao Feng. In-situ strain engineering and applications of van der Waals materials. Acta Physica Sinica, 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [2] Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long. Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb). Acta Physica Sinica, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [3] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [5] Zhu Xin-Qiang, Wang Jian, Zhu Can, Luo Feng, Chen Shu-Quan, Xu Jia-Hui, Xu Feng, Wang Jia-Fu, Zhang Yan, Sun Zhi-Gang. Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal. Acta Physica Sinica, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [6] Hu Shi-Lin, Liu Jun-Hua, Deng Zhi-Xiong, Xiao Wen, Yang Zhan, Chen Kai, Liao Zhao-Liang. Anomalous Hall effect in Pt/La0.67Sr0.33MnO3 heterojunctions. Acta Physica Sinica, 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [7] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [8] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [9] Wang Chen, Xia Wei, Suo Peng, Wang Wei, Lin Xian, Guo Yan-Feng, Ma Guo-Hong. Quasi-two-dimensional van der Waals ferromagnetic semiconductor CrGeTe3 studied by THz spectroscopy. Acta Physica Sinica, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [10] Zhang Lun, Chen Hong-Li, Yi Yu, Zhang Zhen-Hua. Electronic and optical properties and quantum tuning effects of As/Hfs2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [11] Yang Meng, Bai He, Li Gang, Zhu Zhao-Zhao, Zhu Yun, Su Jian, Cai Jian-Wang. Epitaxial growth of Ho3Fe5O12 films with perpendicular magnetic anisotropy and spin transport properties in Ho3Fe5O12/Pt heterostructures. Acta Physica Sinica, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [12] Suo Peng, Xia Wei, Zhang Wen-Jie, Zhu Xiao-Qing, Guo Jia-Jia, Fu Ji-Bo, Lin Xian, Guo Yan-Feng, Ma Guo-Hong. Quasi-two-dimensional van der Waals semiconducting magnet CrSiTe3 studied by using THz spectroscopy. Acta Physica Sinica, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [13] Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect. Acta Physica Sinica, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [14] Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He. Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces. Acta Physica Sinica, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [15] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [16] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [17] Zhu Jin-Rong, Xiang Mei, Hu Jing-Guo. Dynamic behaviors of domain wall in FM/AFM bilayers. Acta Physica Sinica, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [18] Jia Bao-Shen, Zhao Ye-Quan, Zhang Xue-Feng, Shen Yan, He Yan-Lan. Domain structure inversion characterization of near stoichiometric lithium tantalate. Acta Physica Sinica, 2008, 57(9): 5670-5674. doi: 10.7498/aps.57.5670
    [19] Zhao Ming-Lei, Wang Chun-Lei, Wang Jin-Feng, Chen Hong-Cun, Zhong Wei-Lie. Enhanced piezoelectric properties of (Bi0.5Na0.5)1-xBax TiO3 lead-free ceramics by sol-gel method. Acta Physica Sinica, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [20] . Acta Physica Sinica, 2002, 51(2): 420-423. doi: 10.7498/aps.51.420
Metrics
  • Abstract views:  4990
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2022
  • Accepted Date:  28 April 2022
  • Available Online:  23 June 2022
  • Published Online:  20 June 2022

/

返回文章
返回
Baidu
map