-
Delocalized p-shell electron magnetism emerging in a low-dimensional graphene system due to quantum effect is distinct from the localized d/f-shell electron’s. The delocalization effect allows the precise engineering of the magnetic ground state and magnetic exchange interactions in nanographenes, thus implementing the accurate construction of high-quality graphene-based magnetic quantum materials. In recent years, with the development of surface chemistry and surface physics, it has become feasible to study the magnetism of nanographenes with single-atom precision, thus opening a new research direction for studying purely organic quantum magnetism. This review starts from the summarizing of the research background of nanographene magnetism. Then, the physics nature behind the nanographene magnetism and recent experimental researches are discussed. Finally, the challenges and opportunities for further studying low-dimensional magnetic graphenes are briefly discussed.
-
Keywords:
- nanographene /
- delocalized electron magnetism /
- on-surface synthesis /
- scanning tunneling microscope
[1] Yosida K, Mattis D C, Yosida K 1996 Theory of Magnetism (Vol. 122) (Springer Science & Business Media)
[2] Spinelli A, Rebergen M P, Otte A F 2015 J. Phys. Condens. Matter 27 243203
Google Scholar
[3] Foulkes W M C, Mitas L, Needs R J, Rajagopal G 2001 Rev. Mod. Phys. 73 33
Google Scholar
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[5] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794
Google Scholar
[6] Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062
Google Scholar
[7] Sanvito S 2011 Chem. Soc. Rev. 40 3336
Google Scholar
[8] Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179
Google Scholar
[9] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602
Google Scholar
[10] Sarma S D, Freedman M, Nayak C 2015 Npj Quantum Inf. 1 1
[11] Kurmoo M 2009 Chem. Soc. Rev. 38 1353
Google Scholar
[12] Dong L, Liu P N, Lin N 2015 Acc. Chem. Res. 48 2765
Google Scholar
[13] Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80
Google Scholar
[14] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[15] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A 2019 Science 365 605
Google Scholar
[16] Chen G, Sharpe A L, Fox E J, et al. 2022 Nano Lett. 22 238
Google Scholar
[17] Ovchinnikov A A 1978 Theor. Chim. Acta 47 297
Google Scholar
[18] Lieb E H 1989 Phys. Rev. Lett. 62 1201
Google Scholar
[19] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571
Google Scholar
[20] Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers W K, Müllen K, Feng X, Bogani L 2019 Science 366 1107
Google Scholar
[21] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[22] Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
Google Scholar
[23] Yazyev O V 2008 Nano Lett. 8 1011
Google Scholar
[24] Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J 1999 J. Am. Chem. Soc. 121 1619
Google Scholar
[25] Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702
Google Scholar
[26] Allinson G, Bushby R J, Paillaud J L, Oduwole D, Sales K 1993 J. Am. Chem. Soc. 115 2062
Google Scholar
[27] Grill L, Dyer M, Lafferentz L, Persson M, Peters M V, Hecht S 2007 Nat. Nanotechnol. 2 687
Google Scholar
[28] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470
Google Scholar
[29] Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L 2017 Nat. Nanotechnol. 12 308
Google Scholar
[30] Mishra S, Beyer D, Eimre K, Liu J, Berger R, Gröning O, Pignedoli C A, Müllen K, Fasel R, Feng X, Ruffieux P 2019 J. Am. Chem. Soc. 141 10621
Google Scholar
[31] Su J, Telychko M, Hu P, et al. 2019 Sci. Adv. 5 eaav7717
Google Scholar
[32] Li J, Sanz S, Corso M, Choi D J, Peña D, Frederiksen T, Pascual J I 2019 Nat. Commun. 10 200
Google Scholar
[33] Mishra S, Melidonie J, Eimre K, Obermann S, Gröning O, Pignedoli C A, Ruffieux P, Feng X, Fasel R 2020 Chem. Commun. 56 7467
Google Scholar
[34] Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli C A, Müllen K, Liljeroth P, Ruffieux P, Feng X, Fasel R 2020 Nat. Nanotechnol. 15 22
Google Scholar
[35] Mishra S, Beyer D, Berger R, Liu J, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X, Fasel R 2020 J. Am. Chem. Soc. 142 1147
Google Scholar
[36] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S, Jia J 2020 Phys. Rev. Lett. 124 147206
Google Scholar
[37] Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Friedrich N, Frederiksen T, Peña D, Pascual J I 2020 Phys. Rev. Lett. 124 177201
Google Scholar
[38] Mishra S, Beyer D, Eimre K, Ortiz R, Fernández-Rossier J, Berger R, Gröning O, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2020 Angew. Chem. Int. Ed. 59 12041
Google Scholar
[39] Su X, Li C, Du Q, Tao K, Wang S, Yu P 2020 Nano Lett. 20 6859
Google Scholar
[40] Sun Q, Mateo L M, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R 2020 J. Am. Chem. Soc. 142 18109
Google Scholar
[41] Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S 2020 J. Am. Chem. Soc. 142 18532
Google Scholar
[42] Zheng Y, Li C, Xu C, Beyer D, Yue X, Zhao Y, Wang G, Guan D, Li Y, Zheng H, Liu C, Liu J, Wang X, Luo W, Feng X, Wang S, Jia J 2020 Nat. Commun. 11 6076
Google Scholar
[43] Hieulle J, Castro S, Friedrich N, Vegliante A, Lara F R, Sanz S, Rey D, Corso M, Frederiksen T, Pascual J I, Peña D 2021 Angew. Chem. Int. Ed. 60 25224
Google Scholar
[44] Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 Nanoscale 13 1624
Google Scholar
[45] Su J, Fan W, Mutombo P, Peng X, Song S, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J, Lu J 2021 Nano Lett. 21 861
Google Scholar
[46] Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh M J, Edmonds M, Jelínek P, Wu J, Lu J 2021 Sci. Adv. 7 eabf0269
Google Scholar
[47] Mishra S, Yao X, Chen Q, et al. 2021 Nat. Chem. 13 581
Google Scholar
[48] Wang S Y, Zhao Y, Jiang K Y, Li C, Liu Y F, Zhu G C, Guan D D, Li Y Y, Zheng H, Liu C H, Jia J F, Zhuang X D 2021 PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-579482/v1]
[49] Sun Q, Mateo L M, Robles R, Lorente N, Ruffieux P, Bottari G, Torres T, Fasel R 2021 Angew. Chem. Int. Ed. 60 16208
Google Scholar
[50] Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 J. Phys. Chem. Lett. 12 8314
Google Scholar
[51] Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernández-Rossier J, Fasel R 2021 Nature 598 287
Google Scholar
[52] Mishra S, Fatayer S, Fernández S, Kaiser K, Peña D, Gross L 2022 ACS Nano 16 3264
Google Scholar
[53] Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan J P, Pascual J I, Peña D, Casanova D, Corso M, de Oteyza D G 2022 J. Am. Chem. Soc. 144 4522
Google Scholar
[54] Li C, Liu Y, Liu Y, Xue FH, Guan D, Li Y, Zheng H, Liu C, Jia J, Liu P N, Li D Y, Wang S 2022 CCS Chemistry 22 01895
Google Scholar
[55] Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P 2022 Nat. Commun. 13 1705
Google Scholar
[56] Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego J M, Miranda R, Écija D, Jelínek P, Feng X, Urgel J I 2022 Nanomaterials 12 224
Google Scholar
[57] Costi T A 2000 Phys. Rev. Lett. 85 1504
Google Scholar
[58] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
Google Scholar
[59] Tuček J, Błoński P, Ugolotti J, Swain A K, Enoki T, Zbořil R 2018 Chem. Soc. Rev. 47 3899
Google Scholar
[60] Dutta S, Pati S K 2010 J. Mater. Chem. 20 8207
Google Scholar
[61] Houtsma R S K, de la Rie J, Stöhr M 2021 Chem. Soc. Rev. 50 6541
Google Scholar
[62] Clair S, de Oteyza D G 2019 Chem. Rev. 119 4717
Google Scholar
[63] Sun Q, Zhang R, Qiu J, Liu R, Xu W 2018 Adv. Mater. 30 1705630
Google Scholar
[64] Liu J, Feng X 2020 Angew. Chem. Int. Ed. 59 23386
Google Scholar
[65] Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J 2021 Chem. Soc. Rev. 50 3238
Google Scholar
[66] Su J, Telychko M, Song S, Lu J 2020 Angew. Chem. 132 7730
Google Scholar
[67] Sun K, Fang Y, Chi L 2021 ACS Mater. Lett. 3 56
Google Scholar
[68] Ternes M, Heinrich A J, Schneider W D 2009 J. Phys. Condens. Matter 21 053001
Google Scholar
[69] Ternes M 2015 New J. Phys. 17 063016
Google Scholar
[70] Choi D J, Lorente N, Wiebe J, von Bergmann K, Otte A F, Heinrich A J 2019 Rev. Mod. Phys. 91 041001
Google Scholar
[71] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[72] Hubbard J, Flowers B H 1963 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 276 238
[73] Sherrill C D, Manolopoulos D E, Martínez T J, Michaelides A 2020 J. Chem. Phys. 153 070401
Google Scholar
[74] Ortiz R, Fernández-Rossier J 2020 Prog. Surf. Sci. 95 100595
Google Scholar
[75] Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804
Google Scholar
[76] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437
Google Scholar
[77] Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z 2016 Phys. Rev. Lett. 116 026802
Google Scholar
[78] Li D Y, Qiu X, Li S W, Ren Y T, Zhu Y C, Shu C H, Hou X Y, Liu M, Shi X Q, Qiu X, Liu P N 2021 J. Am. Chem. Soc. 143 12955
Google Scholar
[79] Mishra S, Lohr T G, Pignedoli C A, Liu J, Berger R, Urgel J I, Müllen K, Feng X, Ruffieux P, Fasel R 2018 ACS Nano 12 11917
Google Scholar
[80] Lohr T G, Urgel J I, Eimre K, Liu J, Di Giovannantonio M, Mishra S, Berger R, Ruffieux P, Pignedoli C A, Fasel R, Feng X 2020 J. Am. Chem. Soc. 142 13565
Google Scholar
[81] Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P 2014 Chem. Soc. Rev. 43 7067
Google Scholar
[82] Piskun I, Blackwell R, Jornet-Somoza J, Zhao F, Rubio A, Louie S G, Fischer F R 2020 J. Am. Chem. Soc. 142 3696
Google Scholar
[83] Nguyen G D, Tsai H Z, Omrani A A, et al. 2017 Nat. Nanotechnol. 12 1077
Google Scholar
[84] Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed M S G, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza D G 2022 Nano Lett. 22 164
Google Scholar
[85] Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster A S 2018 Sci. Adv. 4 eaar7181
Google Scholar
[86] Blackwell R E, Zhao F, Brooks E, Zhu J, Piskun I, Wang S, Delgado A, Lee Y L, Louie S G, Fischer F R 2021 Nature 600 647
Google Scholar
[87] Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195
[88] Solà M 2013 Front. Chem. 1 22
[89] Sun Z, Lee S, Park K H, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R W, Huang K W, Ding J, Kim D, Wu J 2013 J. Am. Chem. Soc. 135 18229
Google Scholar
[90] Trinquier G, Malrieu J P 2018 J. Phys. Chem. A 122 1088
Google Scholar
[91] Yang Y, Davidson E R, Yang W 2016 Proc. Natl. Acad. Sci. 113 1993
Google Scholar
[92] Zeng W, Sun Z, Herng T S, Gonçalves T P, Gopalakrishna T Y, Huang K W, Ding J, Wu J 2016 Angew. Chem. Int. Ed. 55 8615
Google Scholar
[93] Di Giovannantonio M, Eimre K, Yakutovich A V, Chen Q, Mishra S, Urgel J I, Pignedoli C A, Ruffieux P, Müllen K, Narita A, Fasel R 2019 J. Am. Chem. Soc. 141 12346
Google Scholar
[94] Majzik Z, Pavliček N, Vilas-Varela M, Pérez D, Moll N, Guitián E, Meyer G, Peña D, Gross L 2018 Nat. Commun. 9 1198
Google Scholar
[95] Di Giovannantonio M, Urgel J I, Beser U, Yakutovich A V, Wilhelm J, Pignedoli C A, Ruffieux P, Narita A, Müllen K, Fasel R 2018 J. Am. Chem. Soc. 140 3532
Google Scholar
[96] Di Giovannantonio M, Chen Q, Urgel J I, Ruffieux P, Pignedoli C A, Müllen K, Narita A, Fasel R 2020 J. Am. Chem. Soc. 142 12925
Google Scholar
[97] Narita A, Feng X, Hernandez Y, et al. 2014 Nat. Chem. 6 126
Google Scholar
[98] Gross L, Schuler B, Pavliček N, Fatayer S, Majzik Z, Moll N, Peña D, Meyer G 2018 Angew. Chem. Int. Ed. 57 3888
Google Scholar
[99] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623
Google Scholar
[100] Shen Q, Gao H Y, Fuchs H 2017 Nano Today 13 77
Google Scholar
[101] Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L 2016 Nat. Chem. 8 220
Google Scholar
[102] Kanuru V K, Kyriakou G, Beaumont S K, Papageorgiou A C, Watson D J, Lambert R M 2010 J. Am. Chem. Soc. 132 8081
Google Scholar
[103] Weigelt S, Busse C, Bombis C, et al. 2007 Angew. Chem. Int. Ed. 46 9227
Google Scholar
[104] Palmino F, Loppacher C, Chérioux F 2019 Chem. Phys. Chem. 20 2271
Google Scholar
[105] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, Anderson H L 2019 Science 365 1299
Google Scholar
[106] Urgel J I, Mishra S, Hayashi H, et al. 2019 Nat. Commun. 10 861
Google Scholar
[107] Zhou X, Bebensee F, Shen Q, Bebensee R, Cheng F, He Y, Su H, Chen W, Xu G Q, Besenbacher F, Linderoth T R, Wu K 2017 Mater. Chem. Front. 1 119
Google Scholar
[108] Yuan B, Li C, Zhao Y, et al. 2020 J. Am. Chem. Soc. 142 10034
Google Scholar
[109] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R, Xu W 2016 J. Am. Chem. Soc. 138 1106
Google Scholar
[110] Riss A, Paz A P, Wickenburg S, et al. 2016 Nat. Chem. 8 678
Google Scholar
[111] Hla S W, Bartels L, Meyer G, Rieder K H 2000 Phys. Rev. Lett. 85 2777
Google Scholar
[112] Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D, Gross L 2020 Angew. Chem. Int. Ed. 59 22989
Google Scholar
[113] Zhong Q, Ihle A, Ahles S, Wegner H A, Schirmeisen A, Ebeling D 2021 Nat. Chem. 13 1133
Google Scholar
[114] Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060
[115] Ko W, Ma C, Nguyen G D, Kolmer M, Li A P 2019 Adv. Funct. Mater. 29 1903770
Google Scholar
[116] Eisenhut F, Kühne T, García F, Fernández S, Guitián E, Pérez D, Trinquier G, Cuniberti G, Joachim C, Peña D, Moresco F 2020 ACS Nano 14 1011
Google Scholar
[117] Anderson P W 1961 Phys. Rev. 124 41
Google Scholar
[118] Frota H O 1992 Phys. Rev. B 45 1096
Google Scholar
[119] Nagaoka K, Jamneala T, Grobis M, Crommie M F 2002 Phys. Rev. Lett. 88 077205
Google Scholar
[120] Roch N, Florens S, Costi T A, Wernsdorfer W, Balestro F 2009 Phys. Rev. Lett. 103 197202
Google Scholar
[121] Parks J J, Champagne A R, Costi T A, et al. 2010 Science 328 1370
Google Scholar
[122] Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S, Kouwenhoven L P 2000 Nature 405 764
Google Scholar
[123] Heinrich A J, Gupta J A, Lutz C P, Eigler D M 2004 Science 306 466
Google Scholar
[124] Fernández-Rossier J 2009 Phys. Rev. Lett. 102 256802
Google Scholar
[125] Ortiz R, Boto R A, García-Martínez N, Sancho-García J C, Melle-Franco M, Fernández-Rossier J 2019 Nano Lett. 19 5991
Google Scholar
[126] Bethe H 1931 Z. Für Phys. 71 205
[127] Anderson P W 1951 Phys. Rev. 83 1260
[128] Kubo R 1952 Phys. Rev. 87 568
Google Scholar
[129] Oguchi T 1960 Phys. Rev. 117 117
Google Scholar
[130] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
Google Scholar
[131] Flippen R B, Friedberg S A 1963 J. Chem. Phys. 38 2652
Google Scholar
[132] Sahling S, Remenyi G, Paulsen C, Monceau P, Saligrama V, Marin C, Revcolevschi A, Regnault L P, Raymond S, Lorenzo J E 2015 Nat. Phys. 11 255
Google Scholar
[133] Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini M G, Novak M A 2001 Angew. Chem. Int. Ed. 40 1760
Google Scholar
[134] Zhang W X, Ishikawa R, Breedlove B, Yamashita M 2013 RSC Adv. 3 3772
Google Scholar
[135] Sun Q, Yao X, Gröning O, Eimre K, Pignedoli C A, Müllen K, Narita A, Fasel R, Ruffieux P 2020 Nano Lett. 20 6429
Google Scholar
[136] Rizzo D J, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F 2020 Science 369 1597
Google Scholar
[137] Carbonell-Sanromà E, Garcia-Lekue A, Corso M, et al. 2018 J. Phys. Chem. C 122 16092
Google Scholar
[138] Cao T, Zhao F, Louie S G 2017 Phys. Rev. Lett. 119 076401
Google Scholar
[139] Friedrich N, Brandimarte P, Li J, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I 2020 Phys. Rev. Lett. 125 146801
Google Scholar
[140] Wiesendanger R 2009 Rev. Mod. Phys. 81 1495
Google Scholar
[141] Kolmer M, Zuzak R, Steiner A K, Zajac L, Engelund M, Godlewski S, Szymonski M, Amsharov K 2019 Science 363 57
Google Scholar
[142] Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K 2020 Science 369 571
Google Scholar
[143] Auwärter W 2019 Surf. Sci. Rep. 74 1
Google Scholar
[144] Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, dos Santos Dias M, Lounis S, Wiesendanger R, Wiebe J 2020 Nat. Commun. 11 4707
Google Scholar
[145] Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J 2021 Nat. Phys. 17 943
Google Scholar
[146] Schneider L, Beck P, Neuhaus-Steinmetz J, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2022 Nat. Nanotechnol. 17 384
Google Scholar
-
图 1 石墨烯磁性研究的3个重点 1) 精准化学合成: 制备不同结构的原子级精确的纳米石墨烯. 2) 低维量子磁性: 基于磁性纳米石墨烯构建低维量子自旋系统. 3) 超导近邻效应: 纳米石墨烯磁性与超导相结合
Fig. 1. Three important directions for studying graphene quantum magnetism. 1) Precise chemical synthesis: preparation of atomically precise nanographenes with different structures. 2) Low-dimensional quantum magnetism: construction of low-dimensional quantum spin system based on π-magnetic nanographene. 3) Proximity effect of superconductivity: combination of π-magnetic nanographene with superconductivity.
图 2 三角烯[30]和Clar’s goblet[34]磁性的理论计算 (a), (b) 结构示意图; (c)—(f) 不考虑(c), (e)和考虑(d), (f)电子-电子间多体相互作用的平均场近似能级谱; (g), (i) 单占电子在单占轨道的分布; (h), (j) 单占电子自旋密度分布 ((c), (d), (g), (h)出自文献[30], 已获得授权)
Fig. 2. Calculation of magnetism in triangulene[30] and Clar’s goblet[34]: (a), (b) Molecular structure; (c)–(f) energy spectrum calculated by MFH model considering (c), (e) without and (d), (f) with electron-electron many-body interaction; (g), (i) the distribution of single-occupied electrons in single-occupied molecular orbitals; (h), (j) the distribution of spin density of single-occupied electrons ((c), (d), (g), (h) reproduced with permission from Ref. [30]).
图 3 π电子磁性起源于共振苯环 (a) 共振苯环结构; (b), (c) 分别为并苯和超庚烯的磁性转变; (d) n = 5超庚烯的分子结构、MFH模型的能级分布和单占电子的自旋密度分布, 磁基态为闭壳[33]; (e) n = 7超庚烯的分子结构、MFH模型的能级分布和单占电子的自旋密度分布, 磁基态为开壳[50] ((d), (e)出自文献[33, 50], 已获得授权)
Fig. 3. Clar sextets-induced π-magnetism: (a) Structure of Clar sextets; (b), (c) magnetic transition in acenes and super-zethrenes, respectively; (d) molecular structure, the distribution of energy level and single-occupied electrons spin density of n = 5 super-zethrenes, where magnetic ground state is close shell[33]; (e) molecular structure, the distribution of energy level and single-occupied electrons spin density of n = 7 super-zethrenes, where magnetic ground state is open shell[50] ((d), (e) reproduced with permission from Ref. [33, 50]).
图 5 表面化学合成磁性纳米石墨烯 (a) 原理示意图; (b)—(s) 实验合成的不同磁基态纳米石墨烯[30-32,34-40,42,44,45,47-51] ((b)[36,42], (c)[32], (d)[39], (e)[37], (f)[30], (g)[31], (h)[44], (i)[45], (j)[47], (k)[35], (l)[50], (m) [38], (n)[38], (o)[34], (p)[49], (q)[40], (r)[48], (s)[51])
Fig. 5. On-surface synthesis of magnetic nano graphenes: (a) Schematic illustration of on-surface synthesis; (b)–(s) experimental synthesis results of nanographenes with different magnetic ground states[30-32,34-40,42,44,45,47-51].
图 6 STM针尖诱导表面反应 (a) Ullmann反应[111]; (b) Glaser耦合的中间态[112]; (c) 针尖诱导去氢反应示意图[29]; (d)—(g) 纳米石墨烯中针尖诱导去氢反应, 并逐步获得高自旋 [29,34,37,39] ((a), (b), (d), (e)出自文献[111, 112, 29, 39], 已获得授权)
Fig. 6. STM tip-driven on surface reactions: (a) Ullmann reaction[111]; (b) Glaser coupling and intermediates[112]; (c) schematic illustration of tip-driven on surface dehydrogenation[29]; (d)–(g) tip-driven dehydrogenation in nanographenes and high spins states in the same nanographene are available step by step [29,34,37,39] ((a), (b), (d), (e) reproduced with permission from Ref. [111, 112, 29, 39])
图 7 S = 1/2纳米石墨烯的近藤效应 (a) S = 1/2的近藤共振谱示意图; (b) 近藤共振峰的空间分布[36]; (c) 近藤温度[36]; (d) 近藤共振峰的塞曼劈裂[36]; (e)—(i) 多种S = 1/2纳米石墨烯的近藤效应[32,35,40,41,49] ((b)—(i)出自文献[36, 32, 35, 40, 41, 49], 已获得授权)
Fig. 7. Kondo effect of S = 1/2 nanographenes: (a) Schematic illustration of Kondo resonance spectroscopy of S = 1/2; (b) spatial distribution of Kondo resonance peak[36]; (c) Kondo temperature[36]; (d) Zeeman splitting of Kondo resonance peak[36]; (e)–(i) Kondo effect of various S = 1/2 nanographenes[32,35,40,41,49] ((b)–(i) reproduced with permission from Ref. [36, 32, 35, 40, 41, 49]).
图 8 高自旋纳米石墨烯的近藤效应 (a) S = 1自旋的近藤共振谱示意图; (b), (c) 同一个纳米石墨烯S = 1/2和S = 1的近藤效应[37,39] ((b), (c) 出自文献[37, 39], 已获得授权)
Fig. 8. Kondo effect of high spins nanographenes: (a) Schematic illustration of Kondo resonance spectroscopy of S = 1; (b), (c) Kondo effect of S = 1/2 and S = 1 in the same nanographene[37,39] ((b), (c) reproduced with permission from Ref. [37, 39]).
图 9 自旋单重态纳米石墨烯的自旋交换 (a) S = 0自旋单重态的自旋翻转谱示意图; (b)—(h) 不同纳米石墨烯的自旋交换J [34-36,38,42,47,50] ((b), (c), (f)—(h)出自文献[38, 50, 35, 47], 已获得授权)
Fig. 9. Spin exchange interaction of nanographenes with singlet ground state: (a) Schematic illustration of spin-flip spectroscopy of S = 0 singlet state; (b)–(h) spin exchange interaction J of different nanographenes with singlet ground state [34-36,38,42,47,50] ((b), (c), (f)–(h) reproduced with permission from Ref. [38, 50, 35, 47]).
图 10 磁交换方向的调控 (a), (b) 联接方式改变纳米石墨烯磁基态[38,39]; (c)—(e) AB子格碳原子直联改变磁基态[42] ((a)—(e) 出自文献[38, 39, 42], 已获得授权)
Fig. 10. Controlling magnetic exchange direction: (a), (b) Change of magnetic ground states by different connecting configurations[38,39]; (c)–(e) change of magnetic ground states by direct connecting two C atoms in AB sublattice respectively[42] ((a)–(e) reproduced with permission from Ref. [38, 39, 42]).
图 11 纳米石墨烯构建一维量子自旋链 (a) S = 1/2铁磁链[136]; (b) S = 1/2反铁磁链[138]; (c) 基于三角烯构建S = 1反铁磁链[51]; (d) 基于类卟啉纳米石墨烯构建S = 1反铁磁链[48]; (e) Haldane 量子自旋链[48,51] ((c), (d) 出自文献[51, 48], 已获得授权)
Fig. 11. Building 1D quantum spin chains with magnetic nanographenes: (a) S = 1/2 ferromagnetic spin chain[136]; (b) S = 1/2 antiferromagnetic spin chain[138]; (c) S = 1 antiferromagnetic quantum spin chain build with triangulene[51]; (d) S = 1 antiferromagnetic quantum spin chain build with porphyrins-based magnetic nanographenes[48]; (e) Haldane quantum spin chain[48,51] ((c), (d) reproduced with permission from Ref. [51, 48]).
-
[1] Yosida K, Mattis D C, Yosida K 1996 Theory of Magnetism (Vol. 122) (Springer Science & Business Media)
[2] Spinelli A, Rebergen M P, Otte A F 2015 J. Phys. Condens. Matter 27 243203
Google Scholar
[3] Foulkes W M C, Mitas L, Needs R J, Rajagopal G 2001 Rev. Mod. Phys. 73 33
Google Scholar
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[5] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794
Google Scholar
[6] Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062
Google Scholar
[7] Sanvito S 2011 Chem. Soc. Rev. 40 3336
Google Scholar
[8] Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179
Google Scholar
[9] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602
Google Scholar
[10] Sarma S D, Freedman M, Nayak C 2015 Npj Quantum Inf. 1 1
[11] Kurmoo M 2009 Chem. Soc. Rev. 38 1353
Google Scholar
[12] Dong L, Liu P N, Lin N 2015 Acc. Chem. Res. 48 2765
Google Scholar
[13] Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80
Google Scholar
[14] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[15] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A 2019 Science 365 605
Google Scholar
[16] Chen G, Sharpe A L, Fox E J, et al. 2022 Nano Lett. 22 238
Google Scholar
[17] Ovchinnikov A A 1978 Theor. Chim. Acta 47 297
Google Scholar
[18] Lieb E H 1989 Phys. Rev. Lett. 62 1201
Google Scholar
[19] Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571
Google Scholar
[20] Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers W K, Müllen K, Feng X, Bogani L 2019 Science 366 1107
Google Scholar
[21] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[22] Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
Google Scholar
[23] Yazyev O V 2008 Nano Lett. 8 1011
Google Scholar
[24] Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J 1999 J. Am. Chem. Soc. 121 1619
Google Scholar
[25] Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702
Google Scholar
[26] Allinson G, Bushby R J, Paillaud J L, Oduwole D, Sales K 1993 J. Am. Chem. Soc. 115 2062
Google Scholar
[27] Grill L, Dyer M, Lafferentz L, Persson M, Peters M V, Hecht S 2007 Nat. Nanotechnol. 2 687
Google Scholar
[28] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470
Google Scholar
[29] Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L 2017 Nat. Nanotechnol. 12 308
Google Scholar
[30] Mishra S, Beyer D, Eimre K, Liu J, Berger R, Gröning O, Pignedoli C A, Müllen K, Fasel R, Feng X, Ruffieux P 2019 J. Am. Chem. Soc. 141 10621
Google Scholar
[31] Su J, Telychko M, Hu P, et al. 2019 Sci. Adv. 5 eaav7717
Google Scholar
[32] Li J, Sanz S, Corso M, Choi D J, Peña D, Frederiksen T, Pascual J I 2019 Nat. Commun. 10 200
Google Scholar
[33] Mishra S, Melidonie J, Eimre K, Obermann S, Gröning O, Pignedoli C A, Ruffieux P, Feng X, Fasel R 2020 Chem. Commun. 56 7467
Google Scholar
[34] Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli C A, Müllen K, Liljeroth P, Ruffieux P, Feng X, Fasel R 2020 Nat. Nanotechnol. 15 22
Google Scholar
[35] Mishra S, Beyer D, Berger R, Liu J, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X, Fasel R 2020 J. Am. Chem. Soc. 142 1147
Google Scholar
[36] Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S, Jia J 2020 Phys. Rev. Lett. 124 147206
Google Scholar
[37] Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Friedrich N, Frederiksen T, Peña D, Pascual J I 2020 Phys. Rev. Lett. 124 177201
Google Scholar
[38] Mishra S, Beyer D, Eimre K, Ortiz R, Fernández-Rossier J, Berger R, Gröning O, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2020 Angew. Chem. Int. Ed. 59 12041
Google Scholar
[39] Su X, Li C, Du Q, Tao K, Wang S, Yu P 2020 Nano Lett. 20 6859
Google Scholar
[40] Sun Q, Mateo L M, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R 2020 J. Am. Chem. Soc. 142 18109
Google Scholar
[41] Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S 2020 J. Am. Chem. Soc. 142 18532
Google Scholar
[42] Zheng Y, Li C, Xu C, Beyer D, Yue X, Zhao Y, Wang G, Guan D, Li Y, Zheng H, Liu C, Liu J, Wang X, Luo W, Feng X, Wang S, Jia J 2020 Nat. Commun. 11 6076
Google Scholar
[43] Hieulle J, Castro S, Friedrich N, Vegliante A, Lara F R, Sanz S, Rey D, Corso M, Frederiksen T, Pascual J I, Peña D 2021 Angew. Chem. Int. Ed. 60 25224
Google Scholar
[44] Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 Nanoscale 13 1624
Google Scholar
[45] Su J, Fan W, Mutombo P, Peng X, Song S, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J, Lu J 2021 Nano Lett. 21 861
Google Scholar
[46] Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh M J, Edmonds M, Jelínek P, Wu J, Lu J 2021 Sci. Adv. 7 eabf0269
Google Scholar
[47] Mishra S, Yao X, Chen Q, et al. 2021 Nat. Chem. 13 581
Google Scholar
[48] Wang S Y, Zhao Y, Jiang K Y, Li C, Liu Y F, Zhu G C, Guan D D, Li Y Y, Zheng H, Liu C H, Jia J F, Zhuang X D 2021 PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-579482/v1]
[49] Sun Q, Mateo L M, Robles R, Lorente N, Ruffieux P, Bottari G, Torres T, Fasel R 2021 Angew. Chem. Int. Ed. 60 16208
Google Scholar
[50] Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 J. Phys. Chem. Lett. 12 8314
Google Scholar
[51] Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernández-Rossier J, Fasel R 2021 Nature 598 287
Google Scholar
[52] Mishra S, Fatayer S, Fernández S, Kaiser K, Peña D, Gross L 2022 ACS Nano 16 3264
Google Scholar
[53] Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan J P, Pascual J I, Peña D, Casanova D, Corso M, de Oteyza D G 2022 J. Am. Chem. Soc. 144 4522
Google Scholar
[54] Li C, Liu Y, Liu Y, Xue FH, Guan D, Li Y, Zheng H, Liu C, Jia J, Liu P N, Li D Y, Wang S 2022 CCS Chemistry 22 01895
Google Scholar
[55] Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P 2022 Nat. Commun. 13 1705
Google Scholar
[56] Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego J M, Miranda R, Écija D, Jelínek P, Feng X, Urgel J I 2022 Nanomaterials 12 224
Google Scholar
[57] Costi T A 2000 Phys. Rev. Lett. 85 1504
Google Scholar
[58] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
Google Scholar
[59] Tuček J, Błoński P, Ugolotti J, Swain A K, Enoki T, Zbořil R 2018 Chem. Soc. Rev. 47 3899
Google Scholar
[60] Dutta S, Pati S K 2010 J. Mater. Chem. 20 8207
Google Scholar
[61] Houtsma R S K, de la Rie J, Stöhr M 2021 Chem. Soc. Rev. 50 6541
Google Scholar
[62] Clair S, de Oteyza D G 2019 Chem. Rev. 119 4717
Google Scholar
[63] Sun Q, Zhang R, Qiu J, Liu R, Xu W 2018 Adv. Mater. 30 1705630
Google Scholar
[64] Liu J, Feng X 2020 Angew. Chem. Int. Ed. 59 23386
Google Scholar
[65] Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J 2021 Chem. Soc. Rev. 50 3238
Google Scholar
[66] Su J, Telychko M, Song S, Lu J 2020 Angew. Chem. 132 7730
Google Scholar
[67] Sun K, Fang Y, Chi L 2021 ACS Mater. Lett. 3 56
Google Scholar
[68] Ternes M, Heinrich A J, Schneider W D 2009 J. Phys. Condens. Matter 21 053001
Google Scholar
[69] Ternes M 2015 New J. Phys. 17 063016
Google Scholar
[70] Choi D J, Lorente N, Wiebe J, von Bergmann K, Otte A F, Heinrich A J 2019 Rev. Mod. Phys. 91 041001
Google Scholar
[71] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[72] Hubbard J, Flowers B H 1963 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 276 238
[73] Sherrill C D, Manolopoulos D E, Martínez T J, Michaelides A 2020 J. Chem. Phys. 153 070401
Google Scholar
[74] Ortiz R, Fernández-Rossier J 2020 Prog. Surf. Sci. 95 100595
Google Scholar
[75] Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804
Google Scholar
[76] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437
Google Scholar
[77] Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z 2016 Phys. Rev. Lett. 116 026802
Google Scholar
[78] Li D Y, Qiu X, Li S W, Ren Y T, Zhu Y C, Shu C H, Hou X Y, Liu M, Shi X Q, Qiu X, Liu P N 2021 J. Am. Chem. Soc. 143 12955
Google Scholar
[79] Mishra S, Lohr T G, Pignedoli C A, Liu J, Berger R, Urgel J I, Müllen K, Feng X, Ruffieux P, Fasel R 2018 ACS Nano 12 11917
Google Scholar
[80] Lohr T G, Urgel J I, Eimre K, Liu J, Di Giovannantonio M, Mishra S, Berger R, Ruffieux P, Pignedoli C A, Fasel R, Feng X 2020 J. Am. Chem. Soc. 142 13565
Google Scholar
[81] Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P 2014 Chem. Soc. Rev. 43 7067
Google Scholar
[82] Piskun I, Blackwell R, Jornet-Somoza J, Zhao F, Rubio A, Louie S G, Fischer F R 2020 J. Am. Chem. Soc. 142 3696
Google Scholar
[83] Nguyen G D, Tsai H Z, Omrani A A, et al. 2017 Nat. Nanotechnol. 12 1077
Google Scholar
[84] Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed M S G, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza D G 2022 Nano Lett. 22 164
Google Scholar
[85] Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster A S 2018 Sci. Adv. 4 eaar7181
Google Scholar
[86] Blackwell R E, Zhao F, Brooks E, Zhu J, Piskun I, Wang S, Delgado A, Lee Y L, Louie S G, Fischer F R 2021 Nature 600 647
Google Scholar
[87] Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195
[88] Solà M 2013 Front. Chem. 1 22
[89] Sun Z, Lee S, Park K H, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R W, Huang K W, Ding J, Kim D, Wu J 2013 J. Am. Chem. Soc. 135 18229
Google Scholar
[90] Trinquier G, Malrieu J P 2018 J. Phys. Chem. A 122 1088
Google Scholar
[91] Yang Y, Davidson E R, Yang W 2016 Proc. Natl. Acad. Sci. 113 1993
Google Scholar
[92] Zeng W, Sun Z, Herng T S, Gonçalves T P, Gopalakrishna T Y, Huang K W, Ding J, Wu J 2016 Angew. Chem. Int. Ed. 55 8615
Google Scholar
[93] Di Giovannantonio M, Eimre K, Yakutovich A V, Chen Q, Mishra S, Urgel J I, Pignedoli C A, Ruffieux P, Müllen K, Narita A, Fasel R 2019 J. Am. Chem. Soc. 141 12346
Google Scholar
[94] Majzik Z, Pavliček N, Vilas-Varela M, Pérez D, Moll N, Guitián E, Meyer G, Peña D, Gross L 2018 Nat. Commun. 9 1198
Google Scholar
[95] Di Giovannantonio M, Urgel J I, Beser U, Yakutovich A V, Wilhelm J, Pignedoli C A, Ruffieux P, Narita A, Müllen K, Fasel R 2018 J. Am. Chem. Soc. 140 3532
Google Scholar
[96] Di Giovannantonio M, Chen Q, Urgel J I, Ruffieux P, Pignedoli C A, Müllen K, Narita A, Fasel R 2020 J. Am. Chem. Soc. 142 12925
Google Scholar
[97] Narita A, Feng X, Hernandez Y, et al. 2014 Nat. Chem. 6 126
Google Scholar
[98] Gross L, Schuler B, Pavliček N, Fatayer S, Majzik Z, Moll N, Peña D, Meyer G 2018 Angew. Chem. Int. Ed. 57 3888
Google Scholar
[99] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623
Google Scholar
[100] Shen Q, Gao H Y, Fuchs H 2017 Nano Today 13 77
Google Scholar
[101] Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L 2016 Nat. Chem. 8 220
Google Scholar
[102] Kanuru V K, Kyriakou G, Beaumont S K, Papageorgiou A C, Watson D J, Lambert R M 2010 J. Am. Chem. Soc. 132 8081
Google Scholar
[103] Weigelt S, Busse C, Bombis C, et al. 2007 Angew. Chem. Int. Ed. 46 9227
Google Scholar
[104] Palmino F, Loppacher C, Chérioux F 2019 Chem. Phys. Chem. 20 2271
Google Scholar
[105] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, Anderson H L 2019 Science 365 1299
Google Scholar
[106] Urgel J I, Mishra S, Hayashi H, et al. 2019 Nat. Commun. 10 861
Google Scholar
[107] Zhou X, Bebensee F, Shen Q, Bebensee R, Cheng F, He Y, Su H, Chen W, Xu G Q, Besenbacher F, Linderoth T R, Wu K 2017 Mater. Chem. Front. 1 119
Google Scholar
[108] Yuan B, Li C, Zhao Y, et al. 2020 J. Am. Chem. Soc. 142 10034
Google Scholar
[109] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R, Xu W 2016 J. Am. Chem. Soc. 138 1106
Google Scholar
[110] Riss A, Paz A P, Wickenburg S, et al. 2016 Nat. Chem. 8 678
Google Scholar
[111] Hla S W, Bartels L, Meyer G, Rieder K H 2000 Phys. Rev. Lett. 85 2777
Google Scholar
[112] Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D, Gross L 2020 Angew. Chem. Int. Ed. 59 22989
Google Scholar
[113] Zhong Q, Ihle A, Ahles S, Wegner H A, Schirmeisen A, Ebeling D 2021 Nat. Chem. 13 1133
Google Scholar
[114] Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060
[115] Ko W, Ma C, Nguyen G D, Kolmer M, Li A P 2019 Adv. Funct. Mater. 29 1903770
Google Scholar
[116] Eisenhut F, Kühne T, García F, Fernández S, Guitián E, Pérez D, Trinquier G, Cuniberti G, Joachim C, Peña D, Moresco F 2020 ACS Nano 14 1011
Google Scholar
[117] Anderson P W 1961 Phys. Rev. 124 41
Google Scholar
[118] Frota H O 1992 Phys. Rev. B 45 1096
Google Scholar
[119] Nagaoka K, Jamneala T, Grobis M, Crommie M F 2002 Phys. Rev. Lett. 88 077205
Google Scholar
[120] Roch N, Florens S, Costi T A, Wernsdorfer W, Balestro F 2009 Phys. Rev. Lett. 103 197202
Google Scholar
[121] Parks J J, Champagne A R, Costi T A, et al. 2010 Science 328 1370
Google Scholar
[122] Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S, Kouwenhoven L P 2000 Nature 405 764
Google Scholar
[123] Heinrich A J, Gupta J A, Lutz C P, Eigler D M 2004 Science 306 466
Google Scholar
[124] Fernández-Rossier J 2009 Phys. Rev. Lett. 102 256802
Google Scholar
[125] Ortiz R, Boto R A, García-Martínez N, Sancho-García J C, Melle-Franco M, Fernández-Rossier J 2019 Nano Lett. 19 5991
Google Scholar
[126] Bethe H 1931 Z. Für Phys. 71 205
[127] Anderson P W 1951 Phys. Rev. 83 1260
[128] Kubo R 1952 Phys. Rev. 87 568
Google Scholar
[129] Oguchi T 1960 Phys. Rev. 117 117
Google Scholar
[130] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
Google Scholar
[131] Flippen R B, Friedberg S A 1963 J. Chem. Phys. 38 2652
Google Scholar
[132] Sahling S, Remenyi G, Paulsen C, Monceau P, Saligrama V, Marin C, Revcolevschi A, Regnault L P, Raymond S, Lorenzo J E 2015 Nat. Phys. 11 255
Google Scholar
[133] Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini M G, Novak M A 2001 Angew. Chem. Int. Ed. 40 1760
Google Scholar
[134] Zhang W X, Ishikawa R, Breedlove B, Yamashita M 2013 RSC Adv. 3 3772
Google Scholar
[135] Sun Q, Yao X, Gröning O, Eimre K, Pignedoli C A, Müllen K, Narita A, Fasel R, Ruffieux P 2020 Nano Lett. 20 6429
Google Scholar
[136] Rizzo D J, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F 2020 Science 369 1597
Google Scholar
[137] Carbonell-Sanromà E, Garcia-Lekue A, Corso M, et al. 2018 J. Phys. Chem. C 122 16092
Google Scholar
[138] Cao T, Zhao F, Louie S G 2017 Phys. Rev. Lett. 119 076401
Google Scholar
[139] Friedrich N, Brandimarte P, Li J, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I 2020 Phys. Rev. Lett. 125 146801
Google Scholar
[140] Wiesendanger R 2009 Rev. Mod. Phys. 81 1495
Google Scholar
[141] Kolmer M, Zuzak R, Steiner A K, Zajac L, Engelund M, Godlewski S, Szymonski M, Amsharov K 2019 Science 363 57
Google Scholar
[142] Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K 2020 Science 369 571
Google Scholar
[143] Auwärter W 2019 Surf. Sci. Rep. 74 1
Google Scholar
[144] Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, dos Santos Dias M, Lounis S, Wiesendanger R, Wiebe J 2020 Nat. Commun. 11 4707
Google Scholar
[145] Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J 2021 Nat. Phys. 17 943
Google Scholar
[146] Schneider L, Beck P, Neuhaus-Steinmetz J, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2022 Nat. Nanotechnol. 17 384
Google Scholar
计量
- 文章访问数: 9264
- PDF下载量: 369
- 被引次数: 0