Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scanning tunneling microscopy study of h-BN thin films grown on Cu foils

Xu Dan Yin Jun Sun Hao-Hua Wang Guan-Yong Qian Dong Guan Dan-Dan Li Yao-Yi Guo Wan-Lin Liu Can-Hua Jia Jin-Feng

Citation:

Scanning tunneling microscopy study of h-BN thin films grown on Cu foils

Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Analogous to graphite, hexagonal boron nitride (h-BN) has a layered structure composed of boron and nitrogen atoms that are alternatively bond to each other in a honeycomb array. As the layers are held together by weak van der Waals forces, h-BN thin films can be grown on surfaces of various metal crystals in a layer-by-layer manner, which is again similar to graphene sheets and thus attracts a lot of research interests. In this work, scanning tunneling microscope and spectroscope (STM and STS) were applied to the study of an h-BN thin film with a thickness of about 10 nm grown on Cu foil by means of chemical vapor deposition. X-ray diffraction from the Cu foil shows only one strong peak of Cu(200) in the angle range of 40-60, indicating that the Cu foil is mainly Cu(100). After sufficient annealing in an UHV chamber, the h-BN film sample is transferred to a cooling stage (77 K) for STM/STS measurement. Its high quality is confirmed by a large-scale STM scan that shows an atomically flat topography. A series of dI/dV data taken within varied energy windows all exhibit similar U shapes but with different bottom widths that monotonously decrease with the sweeping energy window. The dI/dV curve taken in the energy window of [-1 V, +1 V] even shows no energy gap in spite that h-BN film is insulating with a quite large energy gap of around 6 eV, as observed in a large-energy-window dI/dV curve (from -5 V to +5 V). These results indicate that the STM images reflect the spatial distribution of tunneling barriers between Cu(100) substrate and STM tip, rather than the local density of states of the h-BN surface. At high sample biases (from 4 V to 1 V), STM images exhibit an electronic modulation pattern with short range order. The modulation pattern displays a substructure in low-bias STM images (less than 100 mV), which finally turns to the (11) lattice of h-BN surface when the sample bias is extremely lowered to 3 mV. It is found that the electronic modulation pattern cannot be fully reproduced by superimposing hexagonal BN lattice on tetragonal Cu(100) lattice, no matter what their relative in-plane crystal orientation is. This implies that the electronic modulation pattern in the STM images is not a Mori pattern due to lattice mismatch. We speculate that it may originate from spatial distribution of tunneling barrier induced by adsorption of H, B and/or N atoms on the Cu(100) surface in the CVD growth process.
      Corresponding author: Liu Can-Hua, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn ; Jia Jin-Feng, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921902, 2012CB927401, 2013CB932604, 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 11521404, 11134008, 11574201, 11574202, 11504230, 51472117, 51535005, 51472117, 51535005), Shanghai Committee of Science and Technology, China (Grant Nos. 15JC1402300, 14PJ1404600), and Jiangsu Province Natural Science Foundation, China (Grant No. BK20130781).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [6]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [8]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394

    [9]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2007 Nature Mater. 7 151

    [10]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [11]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotech. 5 722

    [13]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 64 077305]

    [14]

    Liu M X, Zhang Y F, Liu Z F 2015 Acta Phys. Sin. 64 078101 (in Chinese) [刘梦溪, 张艳锋, 刘忠范 2015 64 078101]

    [15]

    Zhang K, Zhang H, Cheng X 2016 Chin. Phys. B 25 037104

    [16]

    Li G F, Hu J, Lv H, Cui Z, Hou X, Liu S, Du Y 2016 Chin. Phys. B 25 027304

    [17]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [18]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425

    [19]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134

    [20]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209

    [21]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, Kong J 2012 Nano Lett. 12 161

    [22]

    Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497

    [23]

    Li X, Yin J, Zhou J, Guo W 2014 Nanotechnology 25 105701

    [24]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147

    [25]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [26]

    Ma Y D, Dai Y, Guo M, Niu C W, Lu J B, Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546

    [27]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2013 Nature Nanotech. 8 100

    [28]

    Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 135 351

    [29]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [30]

    Watanabe K, Taniguchi T, Kanda H 2004 Nature Mater. 3 404

    [31]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583

    [32]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [33]

    Laskowski R, Blaha P, Gallauner T, Schwarz K 2007 Phys. Rev. Lett. 98 106802

    [34]

    Brugger T, Gnther S, Wang B, Hugo Dil J, Bocquet M L, Osterwalder J, Wintterlin J, Greber T 2009 Phys. Rev. B 79 045407

    [35]

    Sutter P, Lahiri J, Albrecht P, Sutter E 2011 ACS Nano 5 7303

    [36]

    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C 1995 Phys. Rev. B 51 4606

    [37]

    Rokuta E, Hasegawa Y, Suzuki K, Gamou Y, Oshima C, Nagashima A 1997 Phys. Rev. Lett. 79 4609

    [38]

    Auwrter W, Suter H U, Sachdev H, Greber T 2004 Chem. Mater. 16 343

    [39]

    Schulz F, Drost R, Hmlinen S K, Demonchaux T, Seitsonen A P, Liljeroth P 2014 Phys. Rev. B 89 235429

    [40]

    Mller F, Stwe K, Sachdev H 2005 Chem. Mater. 17 3464

    [41]

    Morscher M, Corso M, Greber T, Osterwalder J 2006 Surf. Sci. 600 3280

    [42]

    Corso M, Greber T, Osterwalder J 2005 Surf. Sci. 577 L78

    [43]

    Preobrajenski A B, Vinogradov A S, Ng M L, Ćavar E, Westerstrm R, Mikkelsen A, Lundgren E, Mrtensson N 2007 Phys. Rev. B 75 245412

    [44]

    Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen A P, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth J V, Auwrter W 2012 Nano Lett. 12 5821

    [45]

    Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H, Karna S P 2014 Nano Lett. 14 839

    [46]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [47]

    Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, Hofmann S 2014 Chem. Mater. 26 6380

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [6]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [8]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394

    [9]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2007 Nature Mater. 7 151

    [10]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [11]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotech. 5 722

    [13]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 64 077305]

    [14]

    Liu M X, Zhang Y F, Liu Z F 2015 Acta Phys. Sin. 64 078101 (in Chinese) [刘梦溪, 张艳锋, 刘忠范 2015 64 078101]

    [15]

    Zhang K, Zhang H, Cheng X 2016 Chin. Phys. B 25 037104

    [16]

    Li G F, Hu J, Lv H, Cui Z, Hou X, Liu S, Du Y 2016 Chin. Phys. B 25 027304

    [17]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [18]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425

    [19]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134

    [20]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209

    [21]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, Kong J 2012 Nano Lett. 12 161

    [22]

    Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497

    [23]

    Li X, Yin J, Zhou J, Guo W 2014 Nanotechnology 25 105701

    [24]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147

    [25]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [26]

    Ma Y D, Dai Y, Guo M, Niu C W, Lu J B, Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546

    [27]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2013 Nature Nanotech. 8 100

    [28]

    Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 135 351

    [29]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [30]

    Watanabe K, Taniguchi T, Kanda H 2004 Nature Mater. 3 404

    [31]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583

    [32]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [33]

    Laskowski R, Blaha P, Gallauner T, Schwarz K 2007 Phys. Rev. Lett. 98 106802

    [34]

    Brugger T, Gnther S, Wang B, Hugo Dil J, Bocquet M L, Osterwalder J, Wintterlin J, Greber T 2009 Phys. Rev. B 79 045407

    [35]

    Sutter P, Lahiri J, Albrecht P, Sutter E 2011 ACS Nano 5 7303

    [36]

    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C 1995 Phys. Rev. B 51 4606

    [37]

    Rokuta E, Hasegawa Y, Suzuki K, Gamou Y, Oshima C, Nagashima A 1997 Phys. Rev. Lett. 79 4609

    [38]

    Auwrter W, Suter H U, Sachdev H, Greber T 2004 Chem. Mater. 16 343

    [39]

    Schulz F, Drost R, Hmlinen S K, Demonchaux T, Seitsonen A P, Liljeroth P 2014 Phys. Rev. B 89 235429

    [40]

    Mller F, Stwe K, Sachdev H 2005 Chem. Mater. 17 3464

    [41]

    Morscher M, Corso M, Greber T, Osterwalder J 2006 Surf. Sci. 600 3280

    [42]

    Corso M, Greber T, Osterwalder J 2005 Surf. Sci. 577 L78

    [43]

    Preobrajenski A B, Vinogradov A S, Ng M L, Ćavar E, Westerstrm R, Mikkelsen A, Lundgren E, Mrtensson N 2007 Phys. Rev. B 75 245412

    [44]

    Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen A P, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth J V, Auwrter W 2012 Nano Lett. 12 5821

    [45]

    Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H, Karna S P 2014 Nano Lett. 14 839

    [46]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [47]

    Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, Hofmann S 2014 Chem. Mater. 26 6380

  • [1] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] Yuan Yong-Hao, Xue Qi-Kun, Li Wei. Stripe phase in high-Tc superconductor FeSe/SrTiO3. Acta Physica Sinica, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [3] Li Wen-Hui, Chen Lan, Wu Ke-Hui. Experimental synthesis of borophene. Acta Physica Sinica, 2022, 71(10): 108104. doi: 10.7498/aps.71.20220155
    [4] Dai Hao-Guang, Zha Fang-Xing, Chen Ping-Ping. Theoretical explanation of scanning tunneling spectrum of cleaved (110) surface of InGaAs. Acta Physica Sinica, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [5] You Si-Fan,  Sun Lu-Ye,  Guo Jing,  Qiu Xiao-Hui,  Jiang Ying. Recent advances in probing surface/interfacial water by scanning probe microscopy. Acta Physica Sinica, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [6] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [8] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu. Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Acta Physica Sinica, 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [10] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [11] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [12] Feng Wei, Zhao Ai-Di. STM study of single cobalt atoms and clusters adsorbed on Rh (111) and Pd (111). Acta Physica Sinica, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [13] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [14] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [15] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [16] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [17] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [18] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [19] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  6880
  • PDF Downloads:  275
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2016
  • Accepted Date:  23 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map