搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究

黄德饶 宋俊杰 何丕模 黄凯凯 张寒洁

引用本文:
Citation:

Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究

黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁

Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001)

De-Rao Huang, Jun-Jie Song, Pi-Mo He, Kai-Kai Huang, Han-Jie Zhang
PDF
导出引用
  • 本文报道了9,9'-二亚呫吨分子在Ru(0001)上的吸附行为,随后通过扫描隧道显微镜(STM)在室温下研究了石墨烯的自下而上制备过程。在亚单层体系中,9,9'-二亚呫吨分子随机吸附在Ru(0001)上,我们简单分析了它的空间结构。并以 9,9'-二亚呫吨分子为前体,在Ru(0001)衬底上自下而上制备石墨烯,在超高真空中对Ru(0001)衬底进行长时间退火后,发现了具有不同旋转角(6.3°、13.9°和16.1°)的三种摩尔超结构,这是迄今为止未被观察到的,并通过构建模型分析理解了这三种摩尔超结构的形成机制。这个实验为丰富Ru(0001)上摩尔超结构多样性做出了贡献,同时也对以石墨烯/Ru(0001)为基的进一步科学研究打下坚实基础。
    This paper reports the adsorptions behavior of the 9,9'-Dixanthylidene on Ru(0001), the bottom-up fabrication of graphene was also investigated through a Scanning Tunneling Microscope (STM). We analyzed the spatial structure of 9,9'-Dixanthylidene molecules which were randomly dispersed on the Ru(0001) substrate in the sub-monolayer coverage. Then we bottom-up fabricated the graphene on Ru(0001) substrate with the 9,9'-Dixanthylidene molecules as the precursor. Three kinds of moiré superstructures with different rotation angles (6.3°, 13.9°, and 16.1°) were found after high temperature annealing in an ultrahigh vacuum. This experiment provides data support for the study of moiré superstructures on Ru(0001) substrate and lays a solid foundation for further scientific research based on graphene/Ru(0001).
  • [1]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700

    [4]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [5]

    Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M 2010 Nature 468 549

    [6]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385

    [7]

    Chen Q Y, Song J J, Jing L W, Huang K K, He P M, Zhang H J 2020 Chin. Phys. B 29 026801

    [8]

    Song J J, Zhang H J, Zhang Y X, Cai Y L, Bao S N, He P M 2016 Appl. Surf. Sci. 367 424

    [9]

    Zhang H J, Lü B, Lu Y H, Huang H, Li H Y, Bao S N, He P M 2006 Chin. Phys. 15 1892

    [10]

    N'Diaye A T, Bleikamp S, Feibelman P J, Michely T 2006 Phys. Rev. Lett. 9 7 215501

    [11]

    Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903

    [12]

    Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S 2004 S urf. Sci. 560 183

    [13]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [14]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530

    [15]

    Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102

    [16]

    Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807

    [17]

    Zhang L N, Dong J C, Guan Z Y, Zhang X Y, Ding F 2020 Nanoscale 12 12831

    [18]

    Wang B, Bocquet M L 2012 Nanoscale 4 4687

    [19]

    Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A, Gao H J 2014 Adv. Mater. Interfaces 1 1300104

    [20]

    Han Y and Evans J W 2015 J. Chem. Phys. 143 164706

    [21]

    Juan D A, Mariano D J S, Jose M G R 2019 J. Phys. Chem. C 123 5525

    [22]

    Ren J D, Guo H M, Pan J B, Zhang Y F, Yang Y F, Wu X, Du S X, Ouyang M, Gao H J 2017 Phys. Rev. Lett. 119 176806

    [23]

    Zhang Z M, Zhang W H, Fu Y S 2019 Acta Phys. Sin. 68 226801

    [24]

    Peng J P, Zhang H M, Song C L, Jiang Y P, Wang L L, He K, Xue Q K, Ma X C 2015 Chin. Phys. Lett. 32 068104

    [25]

    Horcas I, Fernández R, Gomez-Rodriguez J M, Colchero G, Baro A M 2007 Rev. Sci. Instrum. 78 013705

    [26]

    Lu B, Zhang H J, Tao Y S, Huang H, Li H Y, Bao S N, He P, Chen Q 2005 Appl. Phys. Lett. 86 061915

    [27]

    Cui Y, Fu Q, Zhang H, Bao X H 2011 Chem. Commun. 47 1470

    [28]

    Bacon M, Bradley S J, Nann T 2014 Part. Part. Syst. Char act. 31 415

    [29]

    Feng W, Lei S L, Li Q X, Zhao A D 2011 J. Phys. Chem. C 115 24858

    [30]

    Jiang D E, Du M H, Dai S 2009 J. Chem. Phys. 130 074705

    [31]

    de Parga A L V, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807

    [32]

    Thiemann F L, Rowe P, Zen A, Muller E A, Michaelides A 2021 Nano Lett. 21 8143

    [33]

    Bhattarai B, Biswas P, Raymond A F, Drabold D A 2018 Phys. Chem. Chem. Phys. 20 19546

    [34]

    Kumar A, Wilson M, Thorpe M F 2012 J. Phys.:Condens. Matter 24 485003

    [35]

    Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y and Chen P 2019 Adv. Mater. 31 1808283

    [36]

    Ye R Q, Peng Z W, Metzger A, Lin J, Mann J A, Huang K W, Xiang C S, Fan X J, Samuel E L G, Alemany L B, Martí A A, Tour J M 2015 ACS Appl. Mater. Interfaces. 7 7041

    [37]

    Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E, Clarke J 1987 Phys. Rev. B 35 7790

    [38]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530.

    [39]

    Wan X, Chen K, Liu D Q, Chen J, Miao Q, Xu J B 2012 Chem. Mater. 24 3906

    [40]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222

    [41]

    Talirz L, Söde H, Cai J M, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X L, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060

    [42]

    Jing L W, Song J J, Zhang Y X, Chen Q Y, Huang K K, Zhang H J, He P M 2019 Chin. Phys. B 28 076801

    [43]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033

    [44]

    Wang B, Bocquet M L 2012 Nanoscale 4 4687

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器.  , doi: 10.7498/aps.73.20240560
    [2] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展.  , doi: 10.7498/aps.72.20221253
    [3] 张玉峰, 卢尧臣, 白萌萌, 李佐, 石明霞, 杨达晓, 杨孝天, 陶敏龙, 孙凯, 王俊忠. 生长在Cd(0001)和Bi(111)上的二氰基蒽分子薄膜的对比.  , doi: 10.7498/aps.72.20222197
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构.  , doi: 10.7498/aps.71.20221057
    [5] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控.  , doi: 10.7498/aps.69.20200124
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究.  , doi: 10.7498/aps.68.20191631
    [7] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度.  , doi: 10.7498/aps.67.20172654
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展.  , doi: 10.7498/aps.67.20181818
    [9] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制.  , doi: 10.7498/aps.66.216803
    [10] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究.  , doi: 10.7498/aps.65.116801
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解.  , doi: 10.7498/aps.65.226801
    [12] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究.  , doi: 10.7498/aps.64.078101
    [13] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附.  , doi: 10.7498/aps.63.197301
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究.  , doi: 10.7498/aps.60.037301
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散.  , doi: 10.7498/aps.60.116803
    [16] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究.  , doi: 10.7498/aps.57.3059
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子.  , doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究.  , doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究.  , doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究.  , doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  2118
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2022-08-01

/

返回文章
返回
Baidu
map