Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Millimeter wave-terahertz substrate integrated waveguide transition structure based on low temperature co-fired ceramic

Teng Lu Yu Zhong-Jun Zhu Da-Li

Citation:

Millimeter wave-terahertz substrate integrated waveguide transition structure based on low temperature co-fired ceramic

Teng Lu, Yu Zhong-Jun, Zhu Da-Li
PDF
HTML
Get Citation
  • In a microwave circuit system, the discontinuity caused by electromagnetic wave entering into another transmission medium from one transmission medium will greatly affect the transmission performance of the system, which has always been the focus of microwave circuit design. When the electromagnetic wave band enters into the millimeter wave and terahertz band, how to realize the efficient and low loss transmission of electromagnetic wave from the metal rectangular waveguide interface to the dielectric substrate is the key to the realization of millimeter wave terahertz communication system. Substrate integrated waveguide to rectangular waveguide transition structure is an important structure connecting waveguide interface and planar circuit in millimeter wave and terahertz communication system, and it is the basis of designing planar antenna array. In this paper, a W-band and D-band substrate integrated waveguide to rectangular waveguide transition structure is designed, which improves the transmission performance and expands the bandwidth through the stepped structure. On this basis, a one-in-two divider structure is designed, with an empty cavity structure used to reduce the loss and expand the bandwidth. These two structures have the characteristics of simple structure and easy processing, and their practicalities are verified by simulation optimization and actual low temperature co-fired ceramic substrate processing and assembly test. The actual test results show that the substrate integrated waveguide to rectangular waveguide transition structure can achieve a return loss of less than –10 dB in a frequency ranges of 126–149 GHz and 112–139 GHz, the one-in-two divider structure can achieve a return loss of less than –10 dB in the frequency band of 132–155 GHz.
      Corresponding author: Teng Lu, tenglu16@mails.ucas.edu.cn
    [1]

    Wang J, Hao Z C, Kui-Kui F 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Chengdu, China, July 20–22, 2016 pp1–3

    [2]

    Song H J 2017 Proc. IEEE 105 1121Google Scholar

    [3]

    Xu R, Gao S, Izquierdo B S, Gu C, Reynaert P, Standaert A, Gibbons G J, Bösch W, Gadringer M E, Li D 2020 IEEE Access 8 57615Google Scholar

    [4]

    李皓 2005 博士学位论文 (南京: 东南大学)

    Li H 2005 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese)

    [5]

    潘俊 2018 硕士学位论文 (成都: 电子科技大学)

    Pan J 2018 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [6]

    张帆 2010 硕士学位论文 (长沙: 国防科学技术大学)

    Zhang F 2010 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [7]

    Mohamed I, Sebak A 2018 IEEE Microw. Wirel. Compon. Lett. 28 966Google Scholar

    [8]

    Abdel-Wahab W, Ehsandar A, Al-Saedi H, Safavi-Naeini S 2016 Electron. Lett. 52 1465Google Scholar

    [9]

    Abdel-Wahab W M, Safavi-Naeini S 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, Georgia, USA, July 7–12, 2019 pp963–964

    [10]

    Li Y, Luk K 2014 IEEE Microw. Wirel. Compon. Lett. 24 590Google Scholar

    [11]

    Zhang D, Xu Z, Xiao Y, Sun H 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP) Xi’an, China, October 16–19 2017 pp1–3

    [12]

    Dai X 2016 IEEE Microw. Wirel. Compon. Lett. 26 897Google Scholar

    [13]

    Cao B, Wang H, Huang Y, Wang J, Sheng W 2013 IEEE Microw. Wirel. Compon. Lett. 23 572Google Scholar

    [14]

    Hansen S, Pohl N 2019 49th European Microwave Conference (EuMC) Paris, France, October 1–3, 2019 pp352–355

    [15]

    Karki S K, Ala-Laurinaho J, Zheng J, Lahti M, Viikari V 2019 16 th European Radar Conference (EuRAD) Paris Expo Porte de Versailles, France, October 2–4, 2019 pp321–324

    [16]

    Abuzaid H, Doghri A, Wu K, Shamim A 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) Seattle, WA, USA, June 2–7, 2013 pp1–3

    [17]

    Zhang T, Li L, Zhu Z, Cui T J 2019 IEEE Microw. Wirel. Compon. Lett. 29 532Google Scholar

    [18]

    Bu S, Jin H, Wang W, Luo G, Chin K S 2019 IEEE MTT-S International Wireless Symposium (IWS) Guangzhou, China, May 19–22, 2019 pp1–3

    [19]

    Esteban H, Belenguer A, Sánchez J R, Bachiller C, Boria V E 2017 IEEE Microw. Wirel. Compon. Lett. 27 685Google Scholar

    [20]

    Parment F, Ghiotto A, Vuong T P, Carpentier L, Wu K 2017 IEEE MTT-S International Microwave Symposium (IMS) Honololu, HI, USA, June 4–9, 2017 pp719–722

    [21]

    Isapour A, Kouki A 2019 IEEE Trans. Microw. Theory 67 868Google Scholar

    [22]

    Tajima T, Song H, Yaita M 2016 IEEE Trans. Microw. Theory 64 106Google Scholar

    [23]

    Hansen S, Kueppers S, Pohl N 2018 48th European Microwave Conference (EuMC) Madrid, Spain, September 23–27, 2018 pp117–120

    [24]

    赵发举 2020 硕士学位论文 (成都: 电子科技大学)

    Zhao F J 2020 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [25]

    Tran T H, Hirokawa J 2011 International Conference on Advanced Technologies for Communications (ATC 2011) Da Nang, Vietnam, August 2–4, 2011 pp187–190

  • 图 1  SIW的典型结构

    Figure 1.  Typical structure of SIW.

    图 2  SIW-RWG的垂直过渡结构 (a)结构模型; (b)电场传输示意图

    Figure 2.  Schematic diagram of vertical transition structure of SIW-RWG: (a) Structural model; (b) schematic diagram of electric field transmission

    图 3  D波段SIW-RWG过渡结构 (a)仿真模型; (b)展开视图

    Figure 3.  D-band SIW-RWG transition structure: (a) Simulation model; (b) expanded view.

    图 4  D波段SIW-RWG过渡结构的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Figure 4.  Simulation results of D-band SIW-RWG transition structure: (a) Return loss S11; (b) insertion loss S21.

    图 5  W波段SIW-RWG过渡结构 (a) 结构模型; (b) 回波损耗S11仿真结果

    Figure 5.  W-band SIW-RWG transition structure: (a) Structural model; (b) simulation results of return loss S11.

    图 6  ESIW的典型结构[24]  (a) 俯视图; (b) 结构图

    Figure 6.  Typical structure of ESIW[24]: (a) Top view; (b) structural view.

    图 7  D波段一分二过渡结构 (a)仿真模型; (b)展开视图

    Figure 7.  D-band one to two divider transition structure: (a) Simulation model; (b) expanded view.

    图 8  D波段一分二过渡结构的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Figure 8.  Simulation results of D-band one to two divider transition structure: (a) Return loss S11; (b) insertion loss S21

    图 9  W波段一分二过渡结构 (a) 仿真结构模型; (b) 仿真结果回波损耗S11

    Figure 9.  W-band one to two divider transition structure: (a) Structural model of simulation; (b) simulation results of return loss S11.

    图 10  SIW-RWG过渡结构的测试基板模型

    Figure 10.  Test substrate model of SIW-RWG transition structure.

    图 11  SIW-RWG过渡结构测试基板模型的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Figure 11.  Simulation results of test substrate model of SIW-RWG transition structure: (a) Return loss S11; (b) insertion loss S21.

    图 12  另一组参数得到的测试基板模型的仿真结果

    Figure 12.  Simulation results of the test substrate model with another set of parameters.

    图 13  一分二过渡结构的测试基板模型

    Figure 13.  Test substrate model of one to two divider transition structure.

    图 14  一分二过渡结构测试基板模型的仿真结果 (a) 回波损耗S11; (b) 插入损耗S21

    Figure 14.  Simulation results of test substrate model of one to two divider transition structure: (a) Return loss S11; (b) insertion loss S21.

    图 15  为实际测试所设计的波导转接件

    Figure 15.  Waveguide adapter designed for practical test.

    图 16  测试所用的LTCC基板

    Figure 16.  LTCC substrate for test.

    图 17  波导转接件实物图

    Figure 17.  Actual diagram of waveguide adapter.

    图 18  粘接了导电胶膜的波导转接件和待粘接的LTCC基板

    Figure 18.  Waveguide adapter bonded with conductive adhesive film and LTCC substrate.

    图 19  SIW-RWG过渡结构和一分二过渡结构实测场景

    Figure 19.  Measured scenes of SIW-RWG transition structure and one to two divider transition structure.

    图 20  SIW-RWG过渡结构测试结果(模型参数取值与图11相对应)

    Figure 20.  Test results of SIW-RWG transition structure (Values of the model parameters correspond to Fig. 11)

    图 21  SIW-RWG过渡结构测试结果(模型参数取值与图12相对应)

    Figure 21.  Test results of SIW-RWG transition structure (Values of the model parameters correspond to Fig. 12)

    图 22  一分二过渡结构测试结果

    Figure 22.  Test results of one to two divider transition structure.

    Baidu
  • [1]

    Wang J, Hao Z C, Kui-Kui F 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Chengdu, China, July 20–22, 2016 pp1–3

    [2]

    Song H J 2017 Proc. IEEE 105 1121Google Scholar

    [3]

    Xu R, Gao S, Izquierdo B S, Gu C, Reynaert P, Standaert A, Gibbons G J, Bösch W, Gadringer M E, Li D 2020 IEEE Access 8 57615Google Scholar

    [4]

    李皓 2005 博士学位论文 (南京: 东南大学)

    Li H 2005 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese)

    [5]

    潘俊 2018 硕士学位论文 (成都: 电子科技大学)

    Pan J 2018 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [6]

    张帆 2010 硕士学位论文 (长沙: 国防科学技术大学)

    Zhang F 2010 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [7]

    Mohamed I, Sebak A 2018 IEEE Microw. Wirel. Compon. Lett. 28 966Google Scholar

    [8]

    Abdel-Wahab W, Ehsandar A, Al-Saedi H, Safavi-Naeini S 2016 Electron. Lett. 52 1465Google Scholar

    [9]

    Abdel-Wahab W M, Safavi-Naeini S 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, Georgia, USA, July 7–12, 2019 pp963–964

    [10]

    Li Y, Luk K 2014 IEEE Microw. Wirel. Compon. Lett. 24 590Google Scholar

    [11]

    Zhang D, Xu Z, Xiao Y, Sun H 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP) Xi’an, China, October 16–19 2017 pp1–3

    [12]

    Dai X 2016 IEEE Microw. Wirel. Compon. Lett. 26 897Google Scholar

    [13]

    Cao B, Wang H, Huang Y, Wang J, Sheng W 2013 IEEE Microw. Wirel. Compon. Lett. 23 572Google Scholar

    [14]

    Hansen S, Pohl N 2019 49th European Microwave Conference (EuMC) Paris, France, October 1–3, 2019 pp352–355

    [15]

    Karki S K, Ala-Laurinaho J, Zheng J, Lahti M, Viikari V 2019 16 th European Radar Conference (EuRAD) Paris Expo Porte de Versailles, France, October 2–4, 2019 pp321–324

    [16]

    Abuzaid H, Doghri A, Wu K, Shamim A 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) Seattle, WA, USA, June 2–7, 2013 pp1–3

    [17]

    Zhang T, Li L, Zhu Z, Cui T J 2019 IEEE Microw. Wirel. Compon. Lett. 29 532Google Scholar

    [18]

    Bu S, Jin H, Wang W, Luo G, Chin K S 2019 IEEE MTT-S International Wireless Symposium (IWS) Guangzhou, China, May 19–22, 2019 pp1–3

    [19]

    Esteban H, Belenguer A, Sánchez J R, Bachiller C, Boria V E 2017 IEEE Microw. Wirel. Compon. Lett. 27 685Google Scholar

    [20]

    Parment F, Ghiotto A, Vuong T P, Carpentier L, Wu K 2017 IEEE MTT-S International Microwave Symposium (IMS) Honololu, HI, USA, June 4–9, 2017 pp719–722

    [21]

    Isapour A, Kouki A 2019 IEEE Trans. Microw. Theory 67 868Google Scholar

    [22]

    Tajima T, Song H, Yaita M 2016 IEEE Trans. Microw. Theory 64 106Google Scholar

    [23]

    Hansen S, Kueppers S, Pohl N 2018 48th European Microwave Conference (EuMC) Madrid, Spain, September 23–27, 2018 pp117–120

    [24]

    赵发举 2020 硕士学位论文 (成都: 电子科技大学)

    Zhao F J 2020 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [25]

    Tran T H, Hirokawa J 2011 International Conference on Advanced Technologies for Communications (ATC 2011) Da Nang, Vietnam, August 2–4, 2011 pp187–190

  • [1] Wang Xiao-Yi, Wang Xi, Wang Jun, Cheng De-Qiang, Wang Yue. Effects of V2O5-Al2O3 sintering aid on properties of low temperature sintered Li-Zn microwave ferrites. Acta Physica Sinica, 2023, 72(3): 037501. doi: 10.7498/aps.72.20221723
    [2] Sun Yuan-Kun, Guo Liang-Hao, Wang Kai-Cheng, Wang Shao-Meng, Gong Yu-Bin. Molecular dynamics simulation of effect of terahertz waves on the secondary structure of potassium channel proteins. Acta Physica Sinica, 2021, 70(24): 248701. doi: 10.7498/aps.70.20211725
    [3] Guan Xiao-Tong, Fu Wen-Jie, Lu Dun, Yang Tong-Bin, Yan Yang, Yuan Xue-Song. Design of second harmonic terahertz gyrotron cavity based on double confocal waveguide. Acta Physica Sinica, 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [4] Wang Cheng, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Millimeter-wave half-waveplate based on field transformation. Acta Physica Sinica, 2018, 67(7): 070201. doi: 10.7498/aps.67.20171774
    [5] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [6] Zhou Pan-Fan, Yuan Huan, Xu Xiao-Nan, Lu Yi-Hong, Xu Ming. Effects of doping F and transition metal on crystal structure and properties of ZnO thin film. Acta Physica Sinica, 2015, 64(24): 247503. doi: 10.7498/aps.64.247503
    [7] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [8] Xia Bu-Gang, Zhang De-Hai, Meng Jin, Zhao Xin. Restrain the spurious resonance of second-order fractal frequency selective surface in MMW band. Acta Physica Sinica, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [9] Hu Xiao-Kun, Li Jiang, Li Xian, Chen Yun-Hui, Li Yan-Feng, Chai Lu, Wang Qing-Yue. Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters. Acta Physica Sinica, 2013, 62(6): 060701. doi: 10.7498/aps.62.060701
    [10] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [11] Gao Song, Pei Li, Ning Ti-Gang, Qi Chun-Hui, Liu Guan-Hui, Li Jing. Study on the polarization mismatch in micro/millimeter-wave generation employing optical self-heterodyning technology. Acta Physica Sinica, 2012, 61(12): 124204. doi: 10.7498/aps.61.124204
    [12] Chen Xing-Hua, Lin Xiao-Dong, Wu Zheng-Mao, Fan Li, Cao Ti, Xia Guang-Qiong. Optical generation of high-quality millimeter-wave based on an optically injected VCSEL subject to polarization-rotated external optical feedback. Acta Physica Sinica, 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [13] Xiang Jun, Guo Yin-Tao, Zhou Guang-Zhen, Chu Yan-Qiu. Preparation, structures and electrical properties of alkaline earth and transition metal-doped NdAlO3 conducting ceramics. Acta Physica Sinica, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [14] Cui Guang-Bin, Miao Jun-Gang, Zhang Yong-Fang. Design of waveguide array frequency selective surface filter in sub-millimeter wave band. Acta Physica Sinica, 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [15] Luo Xian-Gang, Ma Chun-Guang, Liu Jian-Wei, Zhao Qing, He Guo, Zheng Ling. Study on attenuation characteristics of millimeterwave in plasma. Acta Physica Sinica, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [16] Yue Hong-Wei, Wang Zheng, Fan Bin, Song Feng-Bin, You Feng, Zhao Xin-Jie, He Ming, Fang Lan, Yan Shao-Lin. Millimeter wavelength coherent emission from high temperature superconducting bicrystal Josephson junction array. Acta Physica Sinica, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [17] Zhang Yu-Ping, Zhang Hui-Yun, Geng You-Fu, Tan Xiao-Ling, Yao Jian-Quan. Transmission properties of terahertz wave in finite conductance metal-coated hollow waveguide. Acta Physica Sinica, 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [18] Feng He, Xie Yong-Jun, Wang Yuan-Yuan, Fu Huan-Zhan, Lei Fei-Ran. Analysis of a new kind of LTCC cascade multilayer structure by wave concept iterative process. Acta Physica Sinica, 2009, 58(7): 4590-4597. doi: 10.7498/aps.58.4590
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Feng Quan-Yuan. . Acta Physica Sinica, 2002, 51(11): 2612-2616. doi: 10.7498/aps.51.2612
Metrics
  • Abstract views:  4676
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2022
  • Accepted Date:  07 February 2022
  • Available Online:  01 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回
Baidu
map