搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属与F共掺杂ZnO薄膜结构及磁、光特性

周攀钒 袁欢 徐小楠 鹿轶红 徐明

引用本文:
Citation:

过渡金属与F共掺杂ZnO薄膜结构及磁、光特性

周攀钒, 袁欢, 徐小楠, 鹿轶红, 徐明

Effects of doping F and transition metal on crystal structure and properties of ZnO thin film

Zhou Pan-Fan, Yuan Huan, Xu Xiao-Nan, Lu Yi-Hong, Xu Ming
PDF
导出引用
  • 采用溶胶-凝胶法在玻璃衬底上制备了过渡金属元素与F共掺杂Zn0.98-xTMxF0.02O (TMx=Cu0.02, Ni0.01, Mn0.05, Fe0.02, Co0.05)薄膜, 进而利用X射线衍射仪、扫描电子显微镜、紫外-可见透过谱、光致发光及振动样品磁强计等研究了薄膜的表面形貌、微结构、禁带宽度及光致发光(PL)和室温磁学特性. 研究表明: 掺杂离子都以替位的方式进入了ZnO晶格, 掺杂不会破坏ZnO的纤锌矿结构. 其中Zn0.93Co0.05F0.02O薄膜样品的颗粒尺寸最大, 薄膜的结晶度最好且c轴择优取向明显; Zn0.93Mn0.05F0.02O薄膜样品的颗粒尺寸最小, 薄膜结晶度最差且无明显的c轴择优取; Cu, Ni, Fe与F共掺杂样品的颗粒尺寸大小几乎相同. TM掺杂样品均表现出很高的透过率, 同时掺杂后的薄膜样品的禁带宽度都有不同程度的红移. PL谱观察到Zn0.98-xTMxF0.02O薄膜的发射峰主要由较强的紫外发射峰和较弱的蓝光发射峰组成. Zn0.93Mn0.05F0.02O薄膜样品的紫外发光峰最弱, 蓝光发射最强, 饱和磁化强度最大; 与之相反的是Zn0.96Cu0.02F0.02O薄膜, 其紫外发光峰最强, 蓝光发射最弱, 饱和磁化强度最小. 结合微结构和光学性质对Zn0.98-xTMxF0.02O薄膜的磁学性质进行了讨论.
    Transition metal (TM=Cu, Ni, Mn, Fe and Co)-doped ZnO:F thin films are deposited on glass substrates by a sol-gel method through using ethanol as solvent. All the samples are checked by using X-ray diffraction (XRD), atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), photoluminescence, UV spectrophotometer, and vibrating sample magnetometer. The XRD reveals that Cu, Ni, Mn, Fe and Co occupy the Zn sites successfully without changing the wurtzite structure of ZnO at moderate doping concentration, and no evidence of any secondary phases is found. The AFM measurements show that the average values of crystallite surface roughness of the samples are in a range from about 2 to 12.7 nm. The surface of ZnO:F thin film becomes less compact and uniform when ZnO:F thin film is doped with TM ions. The TM ions are indeed substituted at the Zn2+ site into the ZnO lattice as shown in the results obtained by XPS and XRD. Further studies show that most of the ZnO films exhibit preferred (002) orientations, while the best c-axis orientation occurs in Zn0.93Co0.05F0.02O film. However, the crystalline quality and preferential orientation of ZnO film become poor in Zn0.93Mn0.05F0.02O. The optical bandgaps of all the ZnO:F films decrease after doping TM. All the samples show high transmittance values in the visible region. Strong ultraviolet emission and weak blue emission are observed in the photoluminescence spectra measured at room temperature for all the samples. The Zn0.93Mn0.05F0.02O film shows the weakest ultraviolet emission peak and strongest blue emission peak, corresponding to the strongest ferromagnetism; while for the Zn0.96Cu0.02F0.02O film, the strongest ultraviolet emission peak and weakest blue emission peak are observed, accompanied by the weakest ferromagnetism. To determine the optical bandgap (Eg) of TM-doped ZnO:F thin film, we plot the curve of (α hv)2 versus photon energy (hv). It is found that the Eg decreases from 3.16 eV to 3.01 eV with the TM ions doping. We show the variations of saturation magnetization with the Vm O concentration for TM-doped ZnO:F thin films with the different transition metal ions. In the case of Cu-doped ZnO:F thin films, the ZnO sample shows that a weaker magnetism. ZnMnFO film exhibits well-defined hysteresis with a coercive field of 7.28×10-5 emu/g. Further studies reveal that these interesting magnetic properties are correlated with the defect-related model for ferromagnetism. Our results will expand the applications of ZnO:F thin films in visible light emitting diode, photovoltaic devices, photoelectrochromic devices, etc. Meanwhile, extreme cares should be taken to control the codoping of ZnO:F thin films for tuning the magnetization.
      通信作者: 徐明, hsuming_2001@aliyun.com
    • 基金项目: 四川省学术和技术带头人培养基金(批准号: 25727502)和西南民族大学研究生学位点建设项目(批准号: 2015XWD-S0805)资助的课题.
      Corresponding author: Xu Ming, hsuming_2001@aliyun.com
    • Funds: Project supported by the Sichuan Provincial Foundation for Leaders of Disciplines in Science and Technique, China (Grant No. 25727502) and the Foundation for Graduate Degree of Southwest University for Nationalities, China (Grant No. 2015XWD-S0805).
    [1]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [2]

    Sato K, Katayams H 2000 Jpn. J. Appl. Phys. 39 L555

    [3]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [4]

    Xu M, Yuan H, You B, Zhou P F, Dong C J, Duan M Y 2014 J. Appl. Phys. 115 093503

    [5]

    Renero-Lecuna C, Martín-Rodríguez R, Gonzaález J, Rodríguez F, Almonacid G, Segura A 2014 Chem. Mater. 26 1100

    [6]

    Yuan H, Xu M, Du X S 2015 Mater. Lett. 154 94

    [7]

    Zou C W, Wang H J, Liang F, Shao L X 2015 Appl. Phys. Lett. 106 142402

    [8]

    Ferhat M, Zaoui A, Ahuja R 2009 Appl. Phys. Lett. 94 142502

    [9]

    Beltrán J J, Osorio J A, Barrero C A, Hanna C B, Punnoose A 2013 J. Appl. Phys. 113 17C308

    [10]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 56 3440]

    [11]

    Xu M, Zhao H, Ostrikov K, Duan M Y, Xu L X 2009 J. Appl. Phys. 105 043708

    [12]

    Yan W S, Sun Z H, Liu Q H, Yao T, Jiang Q H, Hu F C, Li Y Y, He J F, Peng Y H, Wei S Q 2010 Appl. Phys. Lett. 97 042504

    [13]

    Gong J J, Chen J P, Zhang F, Wu H, Qin M H, Zeng M, Gao X S, Liu J M 2015 Chin. Phys. B 24 037505

    [14]

    Yamamoto T, Katayama Y H 1999 J. Appl. Phys. 38 166

    [15]

    Duan M Y, Xu M, Zhou H P, Shen Y B, Chen Q Y, Ding Y C, Zhu W J 2007 Acta Phys. Sin. 56 5359 (in Chinese) [段满益, 徐明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军 2007 56 5359]

    [16]

    Lin X L, Yan S S, Zhao M W, Hu S J, Yao X X, Han C 2010 J. Appl. Phys. 107 033903

    [17]

    Shinde S S, Shine P S, Pawar S M, Moholkar A V, Bhosale C H, Rajpure K Y 2008 Solid Stat. Sci. 10 1209

    [18]

    Maldonado A, Guillen-Santiago A, de la Olvera L, Castanedo-Pérez R, Torres-Delgado G 2005 Mater. Lett. 59 1146

    [19]

    Altamirano-Juarez D C, Torres-Delgado G, Jimenez-Sandoval S, Jimenez-Sandoval O, Castanedo-Perez R 2004 Sol. Energ. Mat. Sol. C. 82 35

    [20]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [21]

    Gilliland S J, Sans J A, Sánchez-Royo J F, Almonacid G, García-Domene B, Segura A, Tobias G, Canadell E 2012 Phy. Rev. B 86 155203

    [22]

    Yuan H, Xu M, Huang Q Z 2014 J. Alloys Compd. 616 401

    [23]

    Nesakumar N, Rayappan J B B, Jeyaprakash B G, Krishnan U M 2012 J. Appl. Sci. 12 1758

    [24]

    Alias S S, Ismail A B, Mohamad A A 2010 J. Alloys Compd. 499 231

    [25]

    Yuan H, Zhang L, Xu M, Du X S 2015 J. Alloys Compd. 651 571

    [26]

    Sudakar C, Thakur J S, Lawes G, Naik R, Naik V M 2007 Phys. Rev. B 75 054423

    [27]

    Hong R J, Huang J B, He H B, Fan Z X, Shao J D 2005 Appl. Surf. Sci. 242 346

    [28]

    Wu Z F 2010 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese) [吴兆丰 2010 博士学位论文 (苏州: 苏州大学)]

    [29]

    Moulder J F, Sticlae W F, Sobol P E, et al. 1992 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie Minnesota: Perkin-Elmer Corporation) pp87-93

    [30]

    Javakumar O D, Sudakar C, Vinu A, Asthana A, Tyagi A K 2009 J. Phys. Chem. 113 4814

    [31]

    Pei Z X, Ding L Y, Hu J, Weng S X, Zheng Z Y, Huang M L, Liu P 2013 Appl. Catal. B: Environ. 142 736

    [32]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [33]

    Hsieh P T, Chen Y C, Kao K S, Wang C M 2008 Appl. Phys. A 90 317

    [34]

    Jing L Q, Xu Z L, Sun X J, Shang J, Cai W M 2001 Appl. Surf. Sci. 108 308

    [35]

    Jing L Q, Yuan F L, Hou H G, Xin B F, Cai W M, Fu H G 2004 Chin. Sci. B: Chem. 34 310 (in Chinese) [井立强, 袁福龙, 侯海鸽, 辛柏福, 蔡伟民, 付宏刚 2004 中国科学B辑 化学 34 310]

    [36]

    Venkataprasad S B, Deepak F L 2005 Solid State Commun. 135 345

    [37]

    Kurbanov S S, Panin G N, Kim T W, Kang T W 2008 Phys. Rev. B 78 045311

    [38]

    Li H D, Yu S F, Abiyasa A P, Yuen C, Lau S P, Yang H Y, Leong E S P 2005 Appl. Phys. Lett. 86 261111

    [39]

    Song C, Geng K W, Zeng F, Wang X B, Shen Y X, Pan F, Xie Y N, Liu T, Zhou H T, Fan Z 2006 Phys. Rev. B. 73 024405

    [40]

    Zhou P F, Yuan H, Zhang Q, Zhang Q P, Xu X N, Lu Y H, Zhang C L, Xu M 2014 J. Synth. Cryst. 43 3427 (in Chinese) [周攀钒, 袁欢, 张琴, 张秋平, 徐小楠, 鹿轶红, 章春来, 徐明 2014人工晶体学报 43 3427]

    [41]

    Janisch R, Gopal P, Spaldin N A 2005 J. Phys.: Condens. Matter 17 R657

    [42]

    Kittilstved K R, Liu W K, Gamelin D R 2006 Nat. Mater. 5 291

    [43]

    Quan Z, Li D, Sebo B, Liu W, Guo S S, Xu S, Huang H M, Fang G J, Li M Y, Zhao X Z 2010 Appl. Surf. Sci. 256 3669

    [44]

    Hu F C, Liu Q H, Sun Z H, Yao T, Pan Z Y, Li Y Y, He J F, He B, Xie Z, Yan W S, Wei S Q 2011 J. Appl. Phys. 109 103705

    [45]

    Naeem M, Hasanain S K, Afgan S S, Rumaiz A 2008 J. Phys.: Condens. Mater. 20 255223

    [46]

    Coey J M D, Douvalis A P, Fitzgerald C B, Venkatesan M 2004 Appl. Phys. Lett. 84 1332

  • [1]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [2]

    Sato K, Katayams H 2000 Jpn. J. Appl. Phys. 39 L555

    [3]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [4]

    Xu M, Yuan H, You B, Zhou P F, Dong C J, Duan M Y 2014 J. Appl. Phys. 115 093503

    [5]

    Renero-Lecuna C, Martín-Rodríguez R, Gonzaález J, Rodríguez F, Almonacid G, Segura A 2014 Chem. Mater. 26 1100

    [6]

    Yuan H, Xu M, Du X S 2015 Mater. Lett. 154 94

    [7]

    Zou C W, Wang H J, Liang F, Shao L X 2015 Appl. Phys. Lett. 106 142402

    [8]

    Ferhat M, Zaoui A, Ahuja R 2009 Appl. Phys. Lett. 94 142502

    [9]

    Beltrán J J, Osorio J A, Barrero C A, Hanna C B, Punnoose A 2013 J. Appl. Phys. 113 17C308

    [10]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 56 3440]

    [11]

    Xu M, Zhao H, Ostrikov K, Duan M Y, Xu L X 2009 J. Appl. Phys. 105 043708

    [12]

    Yan W S, Sun Z H, Liu Q H, Yao T, Jiang Q H, Hu F C, Li Y Y, He J F, Peng Y H, Wei S Q 2010 Appl. Phys. Lett. 97 042504

    [13]

    Gong J J, Chen J P, Zhang F, Wu H, Qin M H, Zeng M, Gao X S, Liu J M 2015 Chin. Phys. B 24 037505

    [14]

    Yamamoto T, Katayama Y H 1999 J. Appl. Phys. 38 166

    [15]

    Duan M Y, Xu M, Zhou H P, Shen Y B, Chen Q Y, Ding Y C, Zhu W J 2007 Acta Phys. Sin. 56 5359 (in Chinese) [段满益, 徐明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军 2007 56 5359]

    [16]

    Lin X L, Yan S S, Zhao M W, Hu S J, Yao X X, Han C 2010 J. Appl. Phys. 107 033903

    [17]

    Shinde S S, Shine P S, Pawar S M, Moholkar A V, Bhosale C H, Rajpure K Y 2008 Solid Stat. Sci. 10 1209

    [18]

    Maldonado A, Guillen-Santiago A, de la Olvera L, Castanedo-Pérez R, Torres-Delgado G 2005 Mater. Lett. 59 1146

    [19]

    Altamirano-Juarez D C, Torres-Delgado G, Jimenez-Sandoval S, Jimenez-Sandoval O, Castanedo-Perez R 2004 Sol. Energ. Mat. Sol. C. 82 35

    [20]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [21]

    Gilliland S J, Sans J A, Sánchez-Royo J F, Almonacid G, García-Domene B, Segura A, Tobias G, Canadell E 2012 Phy. Rev. B 86 155203

    [22]

    Yuan H, Xu M, Huang Q Z 2014 J. Alloys Compd. 616 401

    [23]

    Nesakumar N, Rayappan J B B, Jeyaprakash B G, Krishnan U M 2012 J. Appl. Sci. 12 1758

    [24]

    Alias S S, Ismail A B, Mohamad A A 2010 J. Alloys Compd. 499 231

    [25]

    Yuan H, Zhang L, Xu M, Du X S 2015 J. Alloys Compd. 651 571

    [26]

    Sudakar C, Thakur J S, Lawes G, Naik R, Naik V M 2007 Phys. Rev. B 75 054423

    [27]

    Hong R J, Huang J B, He H B, Fan Z X, Shao J D 2005 Appl. Surf. Sci. 242 346

    [28]

    Wu Z F 2010 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese) [吴兆丰 2010 博士学位论文 (苏州: 苏州大学)]

    [29]

    Moulder J F, Sticlae W F, Sobol P E, et al. 1992 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie Minnesota: Perkin-Elmer Corporation) pp87-93

    [30]

    Javakumar O D, Sudakar C, Vinu A, Asthana A, Tyagi A K 2009 J. Phys. Chem. 113 4814

    [31]

    Pei Z X, Ding L Y, Hu J, Weng S X, Zheng Z Y, Huang M L, Liu P 2013 Appl. Catal. B: Environ. 142 736

    [32]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [33]

    Hsieh P T, Chen Y C, Kao K S, Wang C M 2008 Appl. Phys. A 90 317

    [34]

    Jing L Q, Xu Z L, Sun X J, Shang J, Cai W M 2001 Appl. Surf. Sci. 108 308

    [35]

    Jing L Q, Yuan F L, Hou H G, Xin B F, Cai W M, Fu H G 2004 Chin. Sci. B: Chem. 34 310 (in Chinese) [井立强, 袁福龙, 侯海鸽, 辛柏福, 蔡伟民, 付宏刚 2004 中国科学B辑 化学 34 310]

    [36]

    Venkataprasad S B, Deepak F L 2005 Solid State Commun. 135 345

    [37]

    Kurbanov S S, Panin G N, Kim T W, Kang T W 2008 Phys. Rev. B 78 045311

    [38]

    Li H D, Yu S F, Abiyasa A P, Yuen C, Lau S P, Yang H Y, Leong E S P 2005 Appl. Phys. Lett. 86 261111

    [39]

    Song C, Geng K W, Zeng F, Wang X B, Shen Y X, Pan F, Xie Y N, Liu T, Zhou H T, Fan Z 2006 Phys. Rev. B. 73 024405

    [40]

    Zhou P F, Yuan H, Zhang Q, Zhang Q P, Xu X N, Lu Y H, Zhang C L, Xu M 2014 J. Synth. Cryst. 43 3427 (in Chinese) [周攀钒, 袁欢, 张琴, 张秋平, 徐小楠, 鹿轶红, 章春来, 徐明 2014人工晶体学报 43 3427]

    [41]

    Janisch R, Gopal P, Spaldin N A 2005 J. Phys.: Condens. Matter 17 R657

    [42]

    Kittilstved K R, Liu W K, Gamelin D R 2006 Nat. Mater. 5 291

    [43]

    Quan Z, Li D, Sebo B, Liu W, Guo S S, Xu S, Huang H M, Fang G J, Li M Y, Zhao X Z 2010 Appl. Surf. Sci. 256 3669

    [44]

    Hu F C, Liu Q H, Sun Z H, Yao T, Pan Z Y, Li Y Y, He J F, He B, Xie Z, Yan W S, Wei S Q 2011 J. Appl. Phys. 109 103705

    [45]

    Naeem M, Hasanain S K, Afgan S S, Rumaiz A 2008 J. Phys.: Condens. Mater. 20 255223

    [46]

    Coey J M D, Douvalis A P, Fitzgerald C B, Venkatesan M 2004 Appl. Phys. Lett. 84 1332

  • [1] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究.  , 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [2] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究.  , 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [3] 潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋. 两种Ge-Sb-Se薄膜的光学性质及微观结构.  , 2020, 69(11): 114201. doi: 10.7498/aps.69.20200145
    [4] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展.  , 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [5] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究.  , 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [6] 牛忠彩, 何智兵, 张颖, 韦建军, 廖国, 杜凯, 唐永建. 射频功率对辉光聚合物薄膜结构与光学性质的影响.  , 2012, 61(10): 106804. doi: 10.7498/aps.61.106804
    [7] 吴海平, 陈栋国, 黄德财, 邓开明. SrCoO3电子结构和磁学性质的第一性原理研究.  , 2012, 61(3): 037101. doi: 10.7498/aps.61.037101
    [8] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究.  , 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] 张宇飞, 郭志友, 曹东兴. ZnO(0001)表面吸附B的电子结构和光学性质研究.  , 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [10] 王江龙, 葛志启, 李慧玲, 刘洪飞, 于威. 后钙钛矿CaRhO3的电子结构和磁学性质的第一性原理研究.  , 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [11] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响.  , 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [12] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [13] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质.  , 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [14] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质.  , 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [15] 邢海英, 范广涵, 周天明. p,n型掺杂剂与Mn共掺杂GaN的电磁性质.  , 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [16] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [18] 杜丕一, 隋 帅, 翁文剑, 韩高荣, 汪建勋. Mg掺杂PST薄膜的溶胶-凝胶法制备及晶相形成研究.  , 2005, 54(11): 5411-5416. doi: 10.7498/aps.54.5411
    [19] 贾建峰, 黄 凯, 潘清涛, 贺德衍. 溶胶-凝胶法制备(Ba0.7Sr0.3)TiO3/LaNiO3异质薄膜及其结构和介电性质研究.  , 2005, 54(9): 4406-4410. doi: 10.7498/aps.54.4406
    [20] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响.  , 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
计量
  • 文章访问数:  6306
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 修回日期:  2015-09-28
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map