搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究

胡晓堃 李江 李贤 陈耘辉 栗岩锋 柴路 王清月

引用本文:
Citation:

太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究

胡晓堃, 李江, 李贤, 陈耘辉, 栗岩锋, 柴路, 王清月

Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters

Hu Xiao-Kun, Li Jiang, Li Xian, Chen Yun-Hui, Li Yan-Feng, Chai Lu, Wang Qing-Yue
PDF
导出引用
  • 光学整流方法产生太赫兹(THz)辐射常用的非线性发射晶体在THz波段都具有较高的折射率, 使得很大一部分THz波由于晶体表面的菲涅尔反射而无法有效耦合输出. 本文报道了GaP晶体THz波发射器输出表面上亚波长微棱锥增透结构的设计和实验研究. 利用有效介质模型在理论上验证了亚波长光栅结构的增透效果, 并进一步设计了适用于不同频段的增透结构的参数. 实验中, 通过微机械加工手段在GaP晶体输出端面刻划了多种亚波长微棱锥结构, 验证了其增透效果及参数对增透频带的关系. 理论与实验的符合证明该设计思想也可用于其他THz波发射晶体.
    Nonlinear crystals commonly used in optical rectification for the generation of terahertz (THz) radiation have high refractive indices in the THz frequency range, and thus Fresnel reflection at the crystal-air output surface causes a large part of the generated THz wave to be reflected back into the crystals. Here we report on the design and experimental study of sub-wavelength antireflective micropyramid structures on GaP crystals. Effective medium theory is used to demonstrate the enhancement of THz output by the antireflective micropyramid structures, and further to design the antireflective structures at different frequencies. Several micropyramid structures are fabricated on the output surface of GaP crystals by micromachining, and the correlation between the THz output enhancement and the structure parameters is verified. The agreement between theory and experiment shows that our methodology is applicable to other THz emitters based on optical rectification.
    • 基金项目: 国家自然科学基金 (批准号: 61077083, 61027013, 61078028, 60838004)、国家重点基础研究发展计划(批准号: 2007CB310408, 2010CB327604, 2011CB808101)和国家自然科学基金中俄合作交流项目(批准号: 61211120193)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077083, 61027013, 61078028, 60838004), the National Basic Research Program of China (Grant Nos. 2007CB310408, 2010CB327604, 2011CB808101), and NSFC-RFBR Program (Grant No. 61211120193).
    [1]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [2]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [3]

    Ikeda T, Matsushita A, Tatsuno M, Minami Y, Yamaguchi M, Yamamoto K, Tani M, Hangyo M 2005 Appl. Phys. Lett. 87 034105

    [4]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 3032

    [5]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [6]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 邢春飞, 张峥, 张存林 2012 61 024202]

    [8]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [9]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [10]

    Hoffmann M C, Flöp J A 2011 J. Phys. D: Appl. Phys. 44 083001

    [11]

    Vodopyanov K L 2006 Opt. Express 14 2263

    [12]

    Zhang T Y, Cao J C 2004 Chin. Phys. 13 1742

    [13]

    Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T 2010 Opt. Express 18 9251

    [14]

    Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212

    [15]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [16]

    Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A 2008 J. Opt. Soc. Am. B 25 B6

    [17]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microw. Guided Wave Lett. 10 264

    [18]

    Hosako I 2005 Appl. Opt. 44 3769

    [19]

    Southwell W H 1991 J. Opt. Soc. Am. A 8 549

    [20]

    Brckner C, Käsebier T, Pradarutti B, Riehemann S, Notni G, Kley E B, Tnnermann A 2009 Opt. Express 17 3063

    [21]

    Kuroo S I, Oyama S, Shiraishi K, Sasho H, Fukushima K 2010 Appl. Opt. 49 2806

    [22]

    Escoubas L, Simon J J, Loli M, Berginc G, Flory F, Giovannini H 2003 Opt. Commun. 226 81

    [23]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811

    [24]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154

    [25]

    Han P, Chen Y W, Zhang X C 2010 IEEE J. Sel. Top. Quantum Electron. 16 338

    [26]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (2nd Ed.) (New Jersey: Wiley Interscience), p246-260

    [27]

    Fang F Z, Liu Y C 2004 J. Micromech. Microeng. 14 984

    [28]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [29]

    Liu F, Hu X K, Li Y F, Xing Q R, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 040703 (in Chinese) [刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月 2012 61 040703]

  • [1]

    Jacobsen R H, Mittleman D M, Nuss M C 1996 Opt. Lett. 21 2011

    [2]

    Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116

    [3]

    Ikeda T, Matsushita A, Tatsuno M, Minami Y, Yamaguchi M, Yamamoto K, Tani M, Hangyo M 2005 Appl. Phys. Lett. 87 034105

    [4]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 3032

    [5]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [6]

    Yoneyama H, Yamashita M, Kasai S, Kawase K, Ito H, Ouchi T 2008 Opt. Commun. 281 1909

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 邢春飞, 张峥, 张存林 2012 61 024202]

    [8]

    Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L, Bing P B 2011 Chin. Phys. B 20 054207

    [9]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [10]

    Hoffmann M C, Flöp J A 2011 J. Phys. D: Appl. Phys. 44 083001

    [11]

    Vodopyanov K L 2006 Opt. Express 14 2263

    [12]

    Zhang T Y, Cao J C 2004 Chin. Phys. 13 1742

    [13]

    Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T 2010 Opt. Express 18 9251

    [14]

    Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212

    [15]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [16]

    Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A 2008 J. Opt. Soc. Am. B 25 B6

    [17]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microw. Guided Wave Lett. 10 264

    [18]

    Hosako I 2005 Appl. Opt. 44 3769

    [19]

    Southwell W H 1991 J. Opt. Soc. Am. A 8 549

    [20]

    Brckner C, Käsebier T, Pradarutti B, Riehemann S, Notni G, Kley E B, Tnnermann A 2009 Opt. Express 17 3063

    [21]

    Kuroo S I, Oyama S, Shiraishi K, Sasho H, Fukushima K 2010 Appl. Opt. 49 2806

    [22]

    Escoubas L, Simon J J, Loli M, Berginc G, Flory F, Giovannini H 2003 Opt. Commun. 226 81

    [23]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811

    [24]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154

    [25]

    Han P, Chen Y W, Zhang X C 2010 IEEE J. Sel. Top. Quantum Electron. 16 338

    [26]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (2nd Ed.) (New Jersey: Wiley Interscience), p246-260

    [27]

    Fang F Z, Liu Y C 2004 J. Micromech. Microeng. 14 984

    [28]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 59 7857]

    [29]

    Liu F, Hu X K, Li Y F, Xing Q R, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 040703 (in Chinese) [刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月 2012 61 040703]

  • [1] 郭金坤, 赵泽佳, 凌进中, 袁影, 王晓蕊. 软物质激光微纳加工技术.  , 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625
    [2] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真.  , 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [3] 张博, 贺青, 杨欣达, 欧阳鹏辉, 王轶文, 韦联福. 共面波导型超导微波功分器: 设计、制备和测试.  , 2021, 70(15): 158501. doi: 10.7498/aps.70.20210168
    [4] 姚尧, 沈悦, 郝加明, 戴宁. 基于亚波长人工微结构的电磁波减反增透研究进展.  , 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [5] 郭伟杰, 陈再高, 蔡利兵, 王光强, 程国新. 0.14 THz双环超材料慢波结构表面波振荡器数值研究.  , 2015, 64(7): 070702. doi: 10.7498/aps.64.070702
    [6] 林圆圆, 姜有恩, 韦辉, 范薇, 李学春. 基于飞秒激光微加工的介质膜损伤修复研究.  , 2015, 64(15): 154207. doi: 10.7498/aps.64.154207
    [7] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计.  , 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [8] 胡兴雷, 孙雅洲, 梁迎春, 陈家轩. 单晶硅微纳构件加工表面性能的时变性研究.  , 2013, 62(22): 220704. doi: 10.7498/aps.62.220704
    [9] 刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. 刻划微棱锥抗反射层的GaP太赫兹波发射器.  , 2012, 61(4): 040703. doi: 10.7498/aps.61.040703
    [10] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究.  , 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [11] 周长柱, 王晨, 李志远. 硅基二维平板光子晶体高Q微腔的制作和光谱测量.  , 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [12] 徐启远, 刘正堂, 李阳平, 武倩, 张淼. ZnS衬底表面亚波长增透结构的设计及制备.  , 2011, 60(1): 014103. doi: 10.7498/aps.60.014103
    [13] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计.  , 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [14] 庄须叶, 刘永顺, 王淑荣, 吴一辉, 张平. 基于微加工工艺的光纤消逝场传感器及其长度特性研究.  , 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
    [15] 张开春, 刘盛纲. 周期极化铌酸锂中光整流THz波辐射.  , 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [16] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性.  , 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [17] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性.  , 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [18] 邓玉强, 邢岐荣, 郎利影, 柴 路, 王清月, 张志刚. THz波的小波变换频谱分析.  , 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [19] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析.  , 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [20] 刘锐, 顾春明, 贺莉蓉, 吴森, 沈文忠, 小川博司, 郭其新. ZnTe晶体中光学整流产生的THz辐射及其电光探测研究.  , 2004, 53(4): 1217-1222. doi: 10.7498/aps.53.1217
计量
  • 文章访问数:  6695
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-24
  • 修回日期:  2012-11-01
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map