-
采用有机凝胶法结合后期高温烧结制备了较为致密的六方钙钛矿结构 Nd0.9Sr0.1Al1-xMxO3-δ (M = Co, Fe, Mn; x = 0, 0.15, 0.3, 0.5)系列陶瓷, 详细研究了过渡金属元素及掺杂量对其结构特征和电性能的影响. 结果表明, 凝胶前驱体在900 ℃焙烧 5 h可制得结晶良好且粒径较为细小的钙钛矿结构精细粉体, 陶瓷体的晶格参数随过渡金属含量x的增加而增大, 且按Co, Mn, Fe顺序递增; 所有陶瓷样品在空气气氛中都是氧离子与电子空穴的混合导体, 碱土金属Sr单掺杂NdAlO3的氧离子迁移数由500 ℃时的0.32单调增加到 850 ℃时的0.63, 其电导率随温度的升高由以电子电导为主逐渐转变为以离子电导为主; 而Sr与过渡金属共掺杂样品的氧离子迁移数均在0.001以下, 其电导率主要取决于p型电导, 且随x的增加而增大, 并按Mn, Fe, Co顺序递增, 相应活化能的变化刚好与之相反, 在所制备的样品中Nd0.9Sr0.1Al0.5Co0.5O3-δ 具有最高的电导率(800 ℃时达到100.8 S/cm)和最低的表观活化能(0.135 eV). 在结构和电性能上所观察到的这些变化行为可根据掺杂过渡金属Co, Fe, Mn的离子半径及其金属-氧(M—O)键的键能和共价性的不同来进行解释.Novel Nd0.9Sr0.1Al1-xMxO3-δ (M = Co, Fe, Mn; x =0, 0.15, 0.3, 0.5) conducting ceramics each with a hexagonal perovskite structure are prepared using organic-gel method combined with subsequent high temperature sintering. The influences of transition elements (Co, Fe, and Mn) and their dosages on the structure characteristics and electrical properties are investigated in detail. The experimental results reveal that well-crystallized Nd0.9Sr0.1Al1-xMxO3-δ perovskite oxide ultrafine powders can be obtained by calcining the gel precursors at 900 ℃ for 5 h. The lattice parameters of sintered ceramics increase with the increase of transition metal content (x), and they increase according to the order of Co, Mn, and Fe. All the samples are mixed conductors of oxygen ions and holes in air, and the oxygen ion transport number is enhanced monotonically from 0.32 at 500 ℃ to 0.63 at 850 ℃ for NdAlO3-δ ceramic single-doped with alkaline earth metal Sr, indicating that this material has an electronic-to-ionic dominant transition in electrical conductivity with measurement temperature increasing. Whereas the oxygen ion transport numbers are all below 0.001 for the samples co-doped with Sr and transition metals (Co, Fe, and Mn), and their electrical conductivities are absolutely dominated by p-type conduction. It is found that the conductivity values increase with the increase of x value, and they increase according to the order of Mn, Fe, and Co, while the change of corresponding apparent activation energies is just the opposite. Nd0.9Sr0.1Al0.5Co0.5O3-δ ceramic has the highest electrical conductivity, ~100.8 S/cm at 800 ℃, and the lowest apparent activation energy (0.135 eV) in all the synthesized samples. The observed changes in structure and electrical property in this study can be explained on the basis of the difference in ionic radii among the doped transition metals as well as the differences in bond energies and covalencies among the M-O bonds.
-
Keywords:
- NdAlO3 /
- alkaline earth and transition metal doping /
- mixed conductor /
- electrical property
[1] Ngamou P H T, Bahlawane N 2009 J. Solid State Chem. 182 849
[2] Lee K T, Manthiram A 2005 J. Electrochem. Soc. 152 A197
[3] Lee K T, Manthiram A 2006 J. Electrochem. Soc. 153 A794
[4] Ecija A, Vidal K, Larrañaga A, Martinez-Amesti A, Ortega-San-Martin L, Arriortua M I 2011 Solid State Ionics 201 35
[5] Sakaki Y, Takeda Y, Kato A, Imanishi N. Yamamoto O. Hattori M, Iio M, Esaki Y 1999 Solid State Ionics 118 187
[6] Wen T L, Tu H Y, Xu Z H, Yamamoto O 1999 Solid State Ionics 121 25
[7] Tu H Y, Takeda Y, Imanishi N, Yamamoto O 1999 Solid State Ionics 117 277
[8] Skinner S J 2001 Int. J. Inorg. Mater. 3 113
[9] Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y 2003 Solid State Ionics 158 55
[10] Kostogloudis G C, Ftikos C 2007 J. Europ. Ceram. Soc. 27 273
[11] Lee K T, Manthiram A 2006 J. Power Sour. 158 1202
[12] Lee K T, Manthiram A 2007 Solid State Ionics 178 995
[13] Torres-Garibay C, Kovar D, Manthiram A 2009 J. Power Sour. 187 480
[14] Dutta a, Mukhopadhyay H, Basu R N 2009 J. Europ. Ceram. Soc. 29 2003
[15] Hariharan R, Venkatasubramanian A, Gopalan P 2010 J. Solid State Electrochem. 14 1657
[16] Kharton V V, Maruques F M, B Atkinson A 2004 Solid State Ionics 174 134
[17] Chen T Y, Fung K Z 2004 J. Power Sour. 132 1
[18] Ishihara T 2008 Perovskite Oxide for Solid Oxide Fuel Cells (London: Springer) p69
[19] Fu Q X, Tietz F, Lersch P, Stöver D 2006 Solid State Ionics 177 1059
[20] Tsipis E V, Kharton V V, Waerenborgh J C, Rojas D P, Naumovich E N, Frade J R 2006 J. Alloys Comp. 413 244
[21] Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese) [向军, 卫婷, 彭田贵, 张誉, 娄可行, 沈湘黔 2009 58 3402]
[22] Xiang J, Guo Y T, Chu Y Q, Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese) [向军, 郭银涛, 褚艳秋, 周广振 2011 60 027203]
[23] Zhu C F, Xue J H, Wang L 2011 Chinese. J. Inorg. Chem. 27 2377 (in Chinese) [朱承飞, 薛金花, 王李 2011 无机化学学报 27 2377]
[24] Pecchi G, Campos C, Pena O 2009 Mater. Res. Bull. 44 846
[25] Zhu C F, Wang G, Xue J H, Wang X J 2009 Acta Phys. Chim. Sin. 25 1179 (in Chinese) [朱承飞, 王刚, 薛金花, 王晓钧2009 物理化学学报 25 1179]
[26] Shannon R D 1976 Acta Cryst. A 32 751
[27] Jiang J G, Cui C, Chen G 2005 J. Mater. Sci. Engin. 23 902 (in Chinese) [江金国, 崔崇, 陈光2005 材料科学与工程学报 23 902]
[28] Mei Y, Chen L, Cao Y Z, Liu B Q, He J H, Zhu Z W, Xu Z A 2010 Acta Phys. Sin. 59 2795 (in Chinese) [梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安 2010 59 2795]
[29] Xia Z C, Tang C Q 1999 Acta Phys. Sin. 48 1518 (in Chinese) [夏正才, 唐超群 1999 25 1518]
[30] Kang J S, Lee H J, Kim G, Kim G H, Dabrowski B, Kolesnik S, Lee Hangil, Kim J Y, Min B I 2008 Phys. Rev. B 78 054434
-
[1] Ngamou P H T, Bahlawane N 2009 J. Solid State Chem. 182 849
[2] Lee K T, Manthiram A 2005 J. Electrochem. Soc. 152 A197
[3] Lee K T, Manthiram A 2006 J. Electrochem. Soc. 153 A794
[4] Ecija A, Vidal K, Larrañaga A, Martinez-Amesti A, Ortega-San-Martin L, Arriortua M I 2011 Solid State Ionics 201 35
[5] Sakaki Y, Takeda Y, Kato A, Imanishi N. Yamamoto O. Hattori M, Iio M, Esaki Y 1999 Solid State Ionics 118 187
[6] Wen T L, Tu H Y, Xu Z H, Yamamoto O 1999 Solid State Ionics 121 25
[7] Tu H Y, Takeda Y, Imanishi N, Yamamoto O 1999 Solid State Ionics 117 277
[8] Skinner S J 2001 Int. J. Inorg. Mater. 3 113
[9] Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y 2003 Solid State Ionics 158 55
[10] Kostogloudis G C, Ftikos C 2007 J. Europ. Ceram. Soc. 27 273
[11] Lee K T, Manthiram A 2006 J. Power Sour. 158 1202
[12] Lee K T, Manthiram A 2007 Solid State Ionics 178 995
[13] Torres-Garibay C, Kovar D, Manthiram A 2009 J. Power Sour. 187 480
[14] Dutta a, Mukhopadhyay H, Basu R N 2009 J. Europ. Ceram. Soc. 29 2003
[15] Hariharan R, Venkatasubramanian A, Gopalan P 2010 J. Solid State Electrochem. 14 1657
[16] Kharton V V, Maruques F M, B Atkinson A 2004 Solid State Ionics 174 134
[17] Chen T Y, Fung K Z 2004 J. Power Sour. 132 1
[18] Ishihara T 2008 Perovskite Oxide for Solid Oxide Fuel Cells (London: Springer) p69
[19] Fu Q X, Tietz F, Lersch P, Stöver D 2006 Solid State Ionics 177 1059
[20] Tsipis E V, Kharton V V, Waerenborgh J C, Rojas D P, Naumovich E N, Frade J R 2006 J. Alloys Comp. 413 244
[21] Xiang J, Wei T, Peng T G, Zhang Y, Lou K X, Shen X Q 2009 Acta Phys. Sin. 58 3402 (in Chinese) [向军, 卫婷, 彭田贵, 张誉, 娄可行, 沈湘黔 2009 58 3402]
[22] Xiang J, Guo Y T, Chu Y Q, Zhou G Z 2011 Acta Phys. Sin. 60 027203 (in Chinese) [向军, 郭银涛, 褚艳秋, 周广振 2011 60 027203]
[23] Zhu C F, Xue J H, Wang L 2011 Chinese. J. Inorg. Chem. 27 2377 (in Chinese) [朱承飞, 薛金花, 王李 2011 无机化学学报 27 2377]
[24] Pecchi G, Campos C, Pena O 2009 Mater. Res. Bull. 44 846
[25] Zhu C F, Wang G, Xue J H, Wang X J 2009 Acta Phys. Chim. Sin. 25 1179 (in Chinese) [朱承飞, 王刚, 薛金花, 王晓钧2009 物理化学学报 25 1179]
[26] Shannon R D 1976 Acta Cryst. A 32 751
[27] Jiang J G, Cui C, Chen G 2005 J. Mater. Sci. Engin. 23 902 (in Chinese) [江金国, 崔崇, 陈光2005 材料科学与工程学报 23 902]
[28] Mei Y, Chen L, Cao Y Z, Liu B Q, He J H, Zhu Z W, Xu Z A 2010 Acta Phys. Sin. 59 2795 (in Chinese) [梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安 2010 59 2795]
[29] Xia Z C, Tang C Q 1999 Acta Phys. Sin. 48 1518 (in Chinese) [夏正才, 唐超群 1999 25 1518]
[30] Kang J S, Lee H J, Kim G, Kim G H, Dabrowski B, Kolesnik S, Lee Hangil, Kim J Y, Min B I 2008 Phys. Rev. B 78 054434
计量
- 文章访问数: 8598
- PDF下载量: 483
- 被引次数: 0