-
During the spacecraft from geospace penetrating into the atmosphere, a plasma sheath can be formed around its external surface due to shock heating which subsequently leads the radio communications between the space vehicle and ground-based stations to interrupt, i.e. the blackout problem happens. Many techniques have been developed to mitigate the blackout problem, and the attachment chemicals releasing is considered as an effective method. Previously, halogenides and water have been widely investigated both theoretically and experimentally. In this work, we report the mitigation of the reentry plasma sheath through releasing carbon dioxide, in which the electron density is reduced through different mechanisms and processes from the releasing halogenides. Controlled experiments are performed to investigate the carbon dioxide released in the arc wind tunnel and the high-frequency plasma wind tunnel. Results suggest that the electron density can be significantly reduced in the simulated plasma sheath environment, which provides a potential approach to solving the communication blackout problem encounterin the reentry process.
-
Keywords:
- plasma sheath /
- carbon dioxide /
- plasma density
[1] Rybak J P 1970 Air Force Cambridge Research Laboratory Contractor Report AFCRL-70-0707
[2] Fuhs A 1963 AIAA/Northwestern University Fifth Biennial Gas Dynamics Symposium 379 14Google Scholar
[3] Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445Google Scholar
[4] Rybak J P, Churchill R J 1971 IEEE Tran. Aerosp. Electron. Syst. 5 879Google Scholar
[5] Gregoire D J, Santoru J, Schumacher R W 1992 Air Force Office Of Scientific ResearchReport HAC-REF-G8200
[6] Akey N D 1971 NASA Special Publication 252 19
[7] Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220
[8] Hodara H 1961 Proc. IRE 49 1825Google Scholar
[9] Belov I F, Borovoy V Y, Gorelov V A, Kireev A Y, Korolev A S, Stepanov E A 2001 J. Spacecr. Rockets 38 249Google Scholar
[10] Reynier P, Evans D 2009 J. Spacecr. Rockets 46 800Google Scholar
[11] Schroeder L C, Russo F P 1968 NASA TM X-1521 1
[12] Hayes D T, Herskovitz S B, Lennon J F, Poirier J L 1974 J. Spacecr. Rockets 11 388Google Scholar
[13] Bernhardt P A 1987 J. Geophys. Res. A:Space Phys. 92 4617Google Scholar
[14] Scales W A, Myers T J, Bernhardt P A, Ganguli G 1997 J. Geophys. Res. A: Space Phys. 102 9767Google Scholar
[15] Yu P C, Liu Y, Cao J X, Lei J H, Zhang Z, Zhang X 2017 AIP Adv. 7 105114Google Scholar
[16] Liu Y, Cao J X, Wang J, Zheng Z, Xu L, Du Y C 2012 Phys. Plasmas 19 092901Google Scholar
[17] Liu Y, Cao J X, Xu L, Zhang X, Wang P, Wang J, Zheng Z 2014 Geophys. Res. Lett. 41 1413Google Scholar
[18] Liu Y, Cao J X, Xu L, Zhang X, Wang P, Wang J, Zheng Z 2014 Geophys. Res. Lett. 119 4134Google Scholar
[19] Zhang X, Cao J X, Liu Y, Yu P C, Zhang Z K 2016 AIP Adv. 6 075304Google Scholar
[20] 欧东斌, 陈连忠, 董永晖, 林鑫, 李飞, 余西龙 实验流体力学 29 62
Ou D B, Chen, L Z, Dong Y H, Lin X, Li F, Yu X L 2015 J. Exp. Fluid Mech. 29 62 (in Chinese)
-
-
[1] Rybak J P 1970 Air Force Cambridge Research Laboratory Contractor Report AFCRL-70-0707
[2] Fuhs A 1963 AIAA/Northwestern University Fifth Biennial Gas Dynamics Symposium 379 14Google Scholar
[3] Keidar M, Kim M, Boyd I D 2008 J. Spacecr. Rockets 45 445Google Scholar
[4] Rybak J P, Churchill R J 1971 IEEE Tran. Aerosp. Electron. Syst. 5 879Google Scholar
[5] Gregoire D J, Santoru J, Schumacher R W 1992 Air Force Office Of Scientific ResearchReport HAC-REF-G8200
[6] Akey N D 1971 NASA Special Publication 252 19
[7] Gillman E D, Foster J E, Blankson I M 2010 NASA/TM-2010-216220
[8] Hodara H 1961 Proc. IRE 49 1825Google Scholar
[9] Belov I F, Borovoy V Y, Gorelov V A, Kireev A Y, Korolev A S, Stepanov E A 2001 J. Spacecr. Rockets 38 249Google Scholar
[10] Reynier P, Evans D 2009 J. Spacecr. Rockets 46 800Google Scholar
[11] Schroeder L C, Russo F P 1968 NASA TM X-1521 1
[12] Hayes D T, Herskovitz S B, Lennon J F, Poirier J L 1974 J. Spacecr. Rockets 11 388Google Scholar
[13] Bernhardt P A 1987 J. Geophys. Res. A:Space Phys. 92 4617Google Scholar
[14] Scales W A, Myers T J, Bernhardt P A, Ganguli G 1997 J. Geophys. Res. A: Space Phys. 102 9767Google Scholar
[15] Yu P C, Liu Y, Cao J X, Lei J H, Zhang Z, Zhang X 2017 AIP Adv. 7 105114Google Scholar
[16] Liu Y, Cao J X, Wang J, Zheng Z, Xu L, Du Y C 2012 Phys. Plasmas 19 092901Google Scholar
[17] Liu Y, Cao J X, Xu L, Zhang X, Wang P, Wang J, Zheng Z 2014 Geophys. Res. Lett. 41 1413Google Scholar
[18] Liu Y, Cao J X, Xu L, Zhang X, Wang P, Wang J, Zheng Z 2014 Geophys. Res. Lett. 119 4134Google Scholar
[19] Zhang X, Cao J X, Liu Y, Yu P C, Zhang Z K 2016 AIP Adv. 6 075304Google Scholar
[20] 欧东斌, 陈连忠, 董永晖, 林鑫, 李飞, 余西龙 实验流体力学 29 62
Ou D B, Chen, L Z, Dong Y H, Lin X, Li F, Yu X L 2015 J. Exp. Fluid Mech. 29 62 (in Chinese)
Catalog
Metrics
- Abstract views: 4185
- PDF Downloads: 58
- Cited By: 0