Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap

Zhang Su-Zhao Sun Wen-Jun Dong Meng Wu Hai-Bin Li Rui Zhang Xue-Jiao Zhang Jing-Yi Cheng Yong-Jun

Citation:

Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap

Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun
PDF
HTML
Get Citation
  • Ultra-high vacuum measurement and extremely high vacuum (UHV/XHV) measurement play an important role in high-tech fields such as deep space exploration, particle accelerators, and nanoscience; with the continuous extension of the lower limit of measurement, especially when it reaches the order of 10–10 Pa, higher requirements are placed on the accuracy of the measurement. At present, in the field of UHV/XHV measurement, ionization gauges based on the principle of neutral gas ionization are commonly applied to the vacuum measurement. However, traditional ionization vacuum gauges during use can create electronic excitation desorption effects, soft X-rays, and the effect of hot cathode outgassing, thereby affecting the accuracy of measurement and limiting the lower limit of measurement. Compared with the traditional measurement technology, this method uses the relationship between the loss rate and pressure caused by the collision of cold atoms trapped in the trap depth with the background gas to calculate the gas density and inversely calculate the vacuum pressure. Based on the intrinsic quantum mechanical properties of cold atom collisions, this method is expected to be developed into a new vacuum traceability standard. In this paper, based on the small-angle approximation and impulse approximation under the quantum scattering theory, the loss rate coefficient of the collision of 6Li cold atoms with background gas molecules is calculated. According to the ideal gas equation, the pressure inversion formula is obtained. The collision loss rate is extracted by accurately fitting the loss curve of the cold atom. In order to improve the accuracy of vacuum inversion and reduce the influence of quantum diffractive collision on loss rate measurement, the trap depth under the conditions of a certain cooling laser intensity, detuning, and magnetic field gradient is determined by the photoassociation method. Finally, in a range of 1 × 10–8–5 × 10–6 Pa, the inverted pressure value is compared with the measured value of the ionization meter, proving that this method has good accuracy and reliability in the inversion of vacuum pressure. At present, the main factor restricting the improvement of accuracy is the influence of the collision between the excited atoms in the magneto-optical trap and the background gas on the loss rate measurement. In the future, with the proportion of excited atoms and the excited state C6 coefficient to be precisely determined, the uncertainty of vacuum pressure measurement can be further reduced.
      Corresponding author: Cheng Yong-Jun, chyj750418@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901203)
    [1]

    Gibney E 2017 Nature 551 18Google Scholar

    [2]

    范栋, 习振华, 贾文杰, 成永军, 李得天 2021 70 040602Google Scholar

    Fan D, Xi Z H, Jia W J, Cheng Y J, Li D T 2021 Acta Phys. Sin. 70 040602Google Scholar

    [3]

    Scherschligt J, Fedchak J A, Ahmed Z, Barker D S, Douglass K, Eckel S, Hanson E, Hendricks J, Klimov N, Purdy T, Ricker J, Singh R, Stone J 2018 J. Vac. Sci. Technol., A 36 040801Google Scholar

    [4]

    Calcatelli A 2013 Measurement 46 1029Google Scholar

    [5]

    李得天, 成永军, 习振华 2018 宇航计测技术 38 1Google Scholar

    Li D T, Cheng Y J, Xi Z H 2018 J. Astronaut. Metrol. Meas. 38 1Google Scholar

    [6]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Bjorkholm J E 1988 Phys. Rev. A 38 1599Google Scholar

    [9]

    Arpornthip T, Sackett C A, Hughes K J 2012 Phys. Rev. A 85 033420Google Scholar

    [10]

    Yuan J P, Ji Z H, Zhao Y T, Chang X F, Xiao L T, Jia S T 2013 Appl. Opt. 52 6195Google Scholar

    [11]

    Xiang J F, Cheng H N, Peng X K, Wang X W, Ren W, Ji J W, Liu K K, Zhao J B, Li L, Qu Q Z, Li T, Wang B, Ye M F, Zhao X, Yao Y Y, Lü D S, Liu L 2018 Chin. Phys. B 27 073701Google Scholar

    [12]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [13]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229

    [15]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [16]

    Makhalov V B, Turlapov A V 2017 Quantum Electron. 47 431Google Scholar

    [17]

    Booth J L, Shen P R, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [18]

    Shen P R, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [19]

    Shen P R, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [20]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [21]

    Bali S, O’Hara K M, Gehm M E, Granade S R, Thomas J E 1999 Phys. Rev. A 60 R29Google Scholar

    [22]

    Zhu C, Dalgarno A, Derevianko 2002 Phys. Rev. A 65 034708Google Scholar

    [23]

    武跃龙, 李睿, 芮扬, 姜海峰, 武海斌 2018 67 163201Google Scholar

    Wu Y L, Li R, Rui Y, Jiang H F, Wu H B 2018 Acta Phys. Sin. 67 163201Google Scholar

    [24]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409Google Scholar

    [25]

    Hoffmann D, Bali S, Walker T 1996 Phys. Rev. A 54 1030Google Scholar

    [26]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J L, Madison K W 2011 Phys. Rev. A 84 022708Google Scholar

    [27]

    Hong S S, Shin Y H, Kim J T 2008 Measurement 41 1026Google Scholar

    [28]

    李得天 2003 真空与低温 9 85Google Scholar

    Li D T 2003 Vac. Cryogenics 9 85Google Scholar

  • 图 1  测量系统示意图

    Figure 1.  Schematic diagram of measurement apparatus.

    图 2  6Li原子的能级结构及光路设计示意图

    Figure 2.  Schematic diagram of energy level and optical path design of 6Li.

    图 3  t = 0时刻关闭磁光阱装载后冷原子数的衰减曲线及拟合线

    Figure 3.  Decay curve of the number of cold atoms and corresponding fitting curve after switching off magneto optical trap (MOT) loading dynamics at time t = 0.

    图 4  在3种不同催化激光失谐量ΔK随占空比d的变化及线性拟合

    Figure 4.  Variation of K with duty factor d and the corresponding linear fitting under three different detunings Δ of catalysis laser.

    图 5  与催化激光诱导的损失率成正比的${{\beta _{{\text{cat}}}}{{\bar n}_{\text{s}}}} / $$ {({{{\varGamma}}_1} + \beta {{\bar n}_{\text{s}}})}$随催化激光失谐量Δ的变化 (a) 对应磁光阱冷却光失谐量Δ3Dc = –12 MHz, 总光功率7.36 mW/cm2; (b) 对应磁光阱冷却光失谐量Δ3Dc = –12 MHz, 总光功率20.9 mW/cm2

    Figure 5.  Quantity $ {{{\beta _{{\text{cat}}}}{{\bar n}_{\text{s}}}} / {({{{\varGamma}}_1} + \beta {{\bar n}_{\text{s}}})}} $, proportional to the photoassociation induced loss rate, measured as a function of the catalysis laser detuning, Δ. The data of (a) correspond to a MOT with a cooling laser detuning of Δ3Dc = –12 MHz and a total pump laser intensity of 7.36 mW/cm2. The data of (b) correspond to a MOT with a cooling laser detuning of Δ3Dc = –12 MHz and a total pump laser intensity of 20.9 mW/cm2.

    图 6  (a) 电离计测量的H2压力值Pgauge与冷原子反演真空度Patom对比图; (b) 电离计测量的N2压力值Pgauge与冷原子反演真空度Patom对比图

    Figure 6.  (a) Comparison of the H2 pressure measured by ionization gauge and by trapped cold atoms; (b) comparison of the N2 pressure measured by ionization gauge and by trapped cold atoms.

    Baidu
  • [1]

    Gibney E 2017 Nature 551 18Google Scholar

    [2]

    范栋, 习振华, 贾文杰, 成永军, 李得天 2021 70 040602Google Scholar

    Fan D, Xi Z H, Jia W J, Cheng Y J, Li D T 2021 Acta Phys. Sin. 70 040602Google Scholar

    [3]

    Scherschligt J, Fedchak J A, Ahmed Z, Barker D S, Douglass K, Eckel S, Hanson E, Hendricks J, Klimov N, Purdy T, Ricker J, Singh R, Stone J 2018 J. Vac. Sci. Technol., A 36 040801Google Scholar

    [4]

    Calcatelli A 2013 Measurement 46 1029Google Scholar

    [5]

    李得天, 成永军, 习振华 2018 宇航计测技术 38 1Google Scholar

    Li D T, Cheng Y J, Xi Z H 2018 J. Astronaut. Metrol. Meas. 38 1Google Scholar

    [6]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Bjorkholm J E 1988 Phys. Rev. A 38 1599Google Scholar

    [9]

    Arpornthip T, Sackett C A, Hughes K J 2012 Phys. Rev. A 85 033420Google Scholar

    [10]

    Yuan J P, Ji Z H, Zhao Y T, Chang X F, Xiao L T, Jia S T 2013 Appl. Opt. 52 6195Google Scholar

    [11]

    Xiang J F, Cheng H N, Peng X K, Wang X W, Ren W, Ji J W, Liu K K, Zhao J B, Li L, Qu Q Z, Li T, Wang B, Ye M F, Zhao X, Yao Y Y, Lü D S, Liu L 2018 Chin. Phys. B 27 073701Google Scholar

    [12]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [13]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229

    [15]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [16]

    Makhalov V B, Turlapov A V 2017 Quantum Electron. 47 431Google Scholar

    [17]

    Booth J L, Shen P R, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [18]

    Shen P R, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [19]

    Shen P R, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [20]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [21]

    Bali S, O’Hara K M, Gehm M E, Granade S R, Thomas J E 1999 Phys. Rev. A 60 R29Google Scholar

    [22]

    Zhu C, Dalgarno A, Derevianko 2002 Phys. Rev. A 65 034708Google Scholar

    [23]

    武跃龙, 李睿, 芮扬, 姜海峰, 武海斌 2018 67 163201Google Scholar

    Wu Y L, Li R, Rui Y, Jiang H F, Wu H B 2018 Acta Phys. Sin. 67 163201Google Scholar

    [24]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409Google Scholar

    [25]

    Hoffmann D, Bali S, Walker T 1996 Phys. Rev. A 54 1030Google Scholar

    [26]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J L, Madison K W 2011 Phys. Rev. A 84 022708Google Scholar

    [27]

    Hong S S, Shin Y H, Kim J T 2008 Measurement 41 1026Google Scholar

    [28]

    李得天 2003 真空与低温 9 85Google Scholar

    Li D T 2003 Vac. Cryogenics 9 85Google Scholar

  • [1] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process. Acta Physica Sinica, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [2] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. Ultra-high vacuum measurement based on 7Li cold atoms manipulation. Acta Physica Sinica, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [3] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [4] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [5] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [6] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [8] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [11] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing. Design and control of large-detuned optical lattice based on 87Rb atoms. Acta Physica Sinica, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [13] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [14] Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang. Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength. Acta Physica Sinica, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [15] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  5128
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2021
  • Accepted Date:  16 January 2022
  • Available Online:  02 February 2022
  • Published Online:  05 May 2022

/

返回文章
返回
Baidu
map